Further Labdane and Kaurane Diterpenoids and Other Constituents from Plectranthus fruticosus

Cristina Gaspar-Marques, ${ }^{\dagger}$ M. Fátima Simões,*,† and Benjamín Rodríguez*, ${ }^{*}$
Faculdade de Farmácia da Universidade de Lisboa, Centro de Estudos de Ciências Farmacêuticas (CECF), Avenida das Forças Armadas, 1649-019 Lisboa, Portugal, and Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), J uan de la Cierva 3, E-28006 Madrid, Spain

Received November 13, 2003

Abstract

Eight new diterpenoids, one labdane and seven kaurane derivatives, and a new aromadendrane-type sesquiterpenoid have been isolated from the most polar chromatographic fractions of an acetone extract of Plectranthus fruticosus. The structures of the new compounds (1-9) were established mainly by 1D and 2D NMR studies and by some chemical transformations. Compounds $\mathbf{6}$ and $\mathbf{8}$ were characterized as their methyl ester derivatives ($\mathbf{1 3}$ and 14, respectively). Most of the isolated compounds and some of their derivatives were tested as antimicrobial agents, but only 19 showed moderate inhibitory activity against Staphylococcus aureus.

Recently, ${ }^{1}$ we reported the isolation of six new diterpenoids from the less polar chromatographic fractions (eluted with petroleum ether, and 9:1 and 3:1 petroleum etherEtOAc) of an acetone extract of the aerial parts of Plectranthus fruticosus L'Hérit. (Labiatae). In this paper, we report on the isolation and structure elucidation of a new aromadendrane-type sesquiterpenoid (1) and eight additional new diterpenoids, one labdane (2) and seven kaurane derivatives (3-9), all of them found in the more polar chromatographic fractions (eluted with 1:1 petroleum ether-EtOAc and EtOAc) of the acetone extract of the plant. Labdane $\mathbf{1 0}^{1,2}$ and kaurane 11, ${ }^{3-6}$ five flavones, and the triterpenoids ursolic and ol eanolic acids have al so been isolated from the same chromatographic fractions. We also report antimicrobial test results on the isolated compounds and some of their derivatives.

Results and Discussion

Repeated chromatographic processes on the fractions from the initial chromatography eluted with 1:1 petroleum ether-EtOAc and EtOAc of the acetone extract of P. fruticosus ${ }^{1}$ (see Experimental Section) yielded compounds $\mathbf{1 - 1 1}$. Compounds 6, 8, and $\mathbf{1 1}$ were purified and characterized as their methyl ester derivatives. Apigenin-7,4'dimethyl ether, ${ }^{7}$ genkwanin, ${ }^{8,9}$ salvigenin, ${ }^{10,11}$ cirsimaritin, ${ }^{12}$ and eupatorin, ${ }^{13,14}$ and ursolic acid and oleanolic acid 15 (characterized as a 2:1 mixture, respectively, of their methyl ester derivatives) were al so isol ated from the most polar chromatographic fractions of the plant extract.

Combustion analysis and low-resolution mass spectrometry indicated a molecular formula $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ for 1, and its IR spectrum showed hydroxyl ($3429 \mathrm{~cm}^{-1}$) and exocyclic methylene (3076, 1637, $897 \mathrm{~cm}^{-1}$) absorptions. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 (Experimental Section) were very similar to those reported ${ }^{16,17}$ for spathulenol [10(14)-aro-madendren- 4β-ol],,18 and the observed differences were consistent with the presence in $\mathbf{1}$ of a hydroxymethylene group instead of one of the three C-Me groups of spathuIenol. The primary alcohol of $\mathbf{1}$ at the $\mathrm{C}-15$ position ${ }^{18}$ was in agreement with the diamagnetic shifts observed for its

[^0]

1

$3 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ac}, \mathrm{R}^{4}=\mathrm{OH}$
$4 R^{1}=R^{4}=H, R^{2}=O H, R^{3}=A C$
$11 R^{1}=R^{2}=R^{3}=R^{4}=H$
$12 R^{1}=\mathrm{Me}, R^{2}=R^{3}=R^{4}=H$
$17 R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ac}, \mathrm{R}^{4}=\mathrm{OH}$
$18 R^{1}=M e, R^{2}=R^{4}=H, R^{3}=A C$

$5 \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{4}=\mathrm{Me}$
$6 R^{1}=H, R^{2}=O H, R^{3}=O A c, R^{4}=\mathrm{Me}$
$7 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OAC}, \mathrm{R}^{4}=\mathrm{CHO}$
$13 R^{1}=R^{4}=\mathrm{Me}, R^{2}=O H, R^{3}=O A C$
$19 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OAC}, \mathrm{R}^{4}=\mathrm{CHO}$

C-3 and C-5 γ-carbons with respect to those of spathulenol ${ }^{16}$ ($\Delta \delta-4.3$ and -2.0 ppm , respectively), as well as with the HMBC connectivities between the $\mathrm{H}_{2}-15$ protons and the C-3, C-4, and C-5 carbons of $\mathbf{1 .}$
The relative stereochemistry of the $\mathrm{H}-1 \alpha, \mathrm{H}-5 \beta, \mathrm{H}-6 \alpha$, and $\mathrm{H}-7 \alpha$ hydrogens of $\mathbf{1}$ was supported by the coupling constant values, which were almost identical with those reported ${ }^{19}$ for 10(14)-aromadendrene. In particular, the observed coupling between the $\mathrm{H}-1 \alpha$ and $\mathrm{H}-5 \beta$ protons (J $=10.7 \mathrm{~Hz}$) precluded a rings A/B cis junction for 1, because in 10(14)-alloaromadendrene and its derivatives, which
possess a $\mathrm{H}-1 \beta$ stereochemistry, this coupling value is 6.67.0 Hz. ${ }^{17,19,20}$ The aromadendrane-type backbone arrangement of 1 was also in agreement with its ${ }^{13} \mathrm{C}$ NMR spectrum because the C-7, C-8, C-9, and C-14 carbon atom resonances were almost identical with those of spathulenol ${ }^{16}$ and 10(14)-aromadendrene, ${ }^{19}$ but very different from those reported for alloaromadendrane-type derivatives, such as in 10(14)-alloaromadendrene. ${ }^{19}$ An α-configuration for the C-15 hydroxymethylene group of $\mathbf{1}$ was supported by NOE experiments. Irradiation at $\delta 0.46$ (H-6 α proton of 1) caused NOE enhancement in the signals of the $\mathrm{H}_{2^{-}}$ $15, \mathrm{H}-1 \alpha, \mathrm{H}-7 \alpha$, and $\mathrm{Me}-12$ protons, thus establishing that all these hydrogens are on the same side of the plane of the molecule. This result not only substantiated an α-configuration for the hydroxymethylene group of 1 but also confirmed the above established backbone arrangement and allowed the unambiguous assignment of the $\mathrm{Me}-12$ group of this sesquiterpenoid. ${ }^{21,22}$ M oreover, comparison of the chemical shift of the C-6 and C-12 carbons of $\mathbf{1}$ [$\delta 28.46$ (CH) and $28.54\left(\mathrm{CH}_{3}\right)$, respectively] with those of spathuIenol ($\delta 30.0$ and 26.1, respectively) ${ }^{16}$ also suggested a 4β -hydroxy- 4α-hydroxymethylene arrangement, because a diamagnetic shift of the C-6 carbon ($\Delta \delta \cong-1.5 \mathrm{ppm}$) and a downfield shift of the $\mathrm{C}-12$ carbon ($\Delta \delta \cong+2.4 \mathrm{ppm}$) with respect to spathulenol have been observed in 4β-hydroxyaromadendrane derivatives possessing an acetoxyl or hydroxyl substituent at the α-side of the molecule, e.g., at the 3α - or 10α-position. ${ }^{22,23}$

Thus, structure 1 (15-hydroxyspathulenol ${ }^{18}$) was assigned to the new sesquiterpenoid. The absolute stereochemistry of $\mathbf{1}$ was not ascertained, although we suppose that it belongs to the normal series like other aromadendranes isolated from higher plants. ${ }^{24}$ On the contrary, entaromadendranes (and exceptionally normal enantiomers) have been found in red algae, soft corals, marine sponges, and liverworts. ${ }^{24}$ Several aromadendrane derivatives have been reported among the constituents of the essential oils of Plectranthus species, ${ }^{25}$ and the hydrocarbon 10(14)aromadendrene occurs in the essential oil of P. fruticosus. ${ }^{26,27}$

Compound $2\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3}\right)$ showed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra almost identical with those of 15, an ent-labdane derivative ${ }^{28}$ previously found ${ }^{1}$ in the plant extract. The observed differences between these spectra were consistent with the presence of the acetoxyl group of 2 at the 3β-equatorial position ($\delta_{\mathrm{H}-2 \beta} 3.81,1 \mathrm{H}$, ddd, $\mathrm{J}=11.7,10.4,4.3 \mathrm{~Hz}, \delta_{\mathrm{H}-3 \alpha}$ $4.53,1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}$) instead of the equatorial 2α-acetate of 15. ${ }^{1,28}$ The connectivity between the carbonyl carbon of the acetate ($\delta 172.5$) and the proton doublet at δ $4.53(\mathrm{H}-3 \alpha)$, observed in the HMBC spectrum of $\mathbf{2}$, further supported that 2 and 15^{1} were regioisomers. Alkaline hydrolysis of $\mathbf{2}$ yielded $\mathbf{1 0}\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}\right)$, another diterpenoid now isolated in large amounts from P . fruticosus and previously known ${ }^{1}$ as a synthetic derivative of $\mathbf{1 5}$. In fact, 10 had been found for the first time in Croton joufra Roxb. (E uphorbiaceae), ${ }^{2}$ but its structure had been erroneously established. ${ }^{1,2}$ An ent-labdane absol ute stereochemistry for 10 and $\mathbf{1 5}$ has been suggested previously ${ }^{1}$ on the basis of the change of the molecular rotations. Now, the absolute configuration of all these chemically correlated diterpenoids ($\mathbf{2}, \mathbf{1 0}$, and $\mathbf{1 5)}$ was established by using the CD exciton chirality method. ${ }^{29}$ Benzoylation of $\mathbf{1 0}$ yielded 16, the $2 \alpha, 3 \beta$-dibenzoyloxy binary system of which showed a positive first and a negative second Cotton effect ($\Delta \epsilon_{235}$ $+12.5, \Delta \epsilon_{224}-10.3$), ${ }^{30}$ thus defining a positive chirality ${ }^{29}$ and, consequently, an ent-labdane absolute configuration for $\mathbf{1 6}$, and therefore for $\mathbf{2}, \mathbf{1 0}$, and 15.

Another diterpenoid isolated from P. fruticosus (11) was purified as its methyl ester derivative 12, which showed physical and spectroscopic data identical to those reported previously ${ }^{3-6}$ for methyl ent-12 β-hydroxykaur-16-en-19oate. ${ }^{28}$ Compound $\mathbf{1 1}$ has been found in several Compositae species, ${ }^{3,5,6}$ and it was also obtained ${ }^{4}$ from grandiflorenic acid.

Compound $3\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}\right)$ and its methyl ester derivative (17, $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$) showed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra very similar to those of methyl ent-12 β-acetoxykaur-16-en-19oate (18), found as the free acid in the same plant. ${ }^{1}$ The observed differences in the chemical shifts of the C-7-C-9 and $\mathrm{C}-13-\mathrm{C}-17$ carbons of $\mathbf{1 7}$ and $\mathbf{1 8}$ were in agreement ${ }^{31}$ with the presence in 17, and hence in $\mathbf{3}$, of an additional hydroxyl group at the C-15 position. The HMBC spectrum of $\mathbf{3}$ showed connectivities between the $\mathrm{H}-15$ proton and the C-8, C-9, C-13, C-14, and C-17 carbons, thus confirming the C-15 position for the secondary hydroxyl group. Irradiation at the $\mathrm{H}-15$ proton of $\mathbf{3}$ and $\mathbf{1 7}$ ($\delta 4.19$ and 3.83, respectively) caused NOE enhancements in the signals of the H-9 α^{28} (+11.6 and $+9.1 \%$, respectively) protons, thus establishing an α-configuration for the $\mathrm{H}-15$ proton. This NOE experiment not only established the configuration of the C-15 stereogenic center in $\mathbf{3}$ but also distinguished both methylene protons at C-17 and, more important, preduded the possibility of a phyllocladane (13β-kaurane) ${ }^{32}$ hydrocarbon skeleton for 3, because the observed NOE between the $\mathrm{H}-15 \alpha$ and $\mathrm{H}-9 \alpha^{28}$ protons is compatible only with a kaurane stereochemistry and not with that of the diastereoisomer phyllodadane, in which the $\mathrm{H}_{2}-15$ and $\mathrm{H}-9$ protons are on opposite sides of the plane of the molecule. ${ }^{32}$ From all of the above data, it was evident that structure 3 (ent-12 β-acetoxy-15 β-hydroxykaur-16-en-19-oic acid²8) must be assigned to this diterpenoid. The absolute configuration of 3, as well as that of the other new kauranes quoted below (4-9), was not ascertained by direct methods. However, we suppose that 3-9 belong to the enantio series like $\mathbf{1 1}$ and other kaurane derivatives found in Plectranthus species. ${ }^{1,25}$ Moreover, the vast majority of the kaurane-type diterpenoids until now isol ated from natural sources belong to the enantio series. 32,33
Phyllocladane-type diterpenoids are rare in nature, and they have been isolated predominantly from plants of the Plectranthus (Labiatae) ${ }^{32-35}$ and Callicarpa (Verbenaceae) ${ }^{36}$ genera. ${ }^{37}$ Although several criteria, based on ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, ${ }^{32,38}$ have been used successfully for distinguishing phyllocladanes from kauranes, in this work NOE experiments have shown to be a reliable and easy method for establishing a kaurane hydrocarbon skeleton for $\mathbf{3}$ (see above) and 4-9 (see below).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}\right)$ were in agreement with a structure nearly identical with that of 18, ${ }^{1}$ but possessing a carboxyl function at C-19 instead of the carbomethoxyl group of $\mathbf{1 8}$ and an additional secondary alcohol equatorially oriented at the 7β-position. ${ }^{28}$ The crosspeaks observed in the HMBC spectrum of 4 between the $\mathrm{H}-7 \alpha$ proton and the $\mathrm{C}-6, \mathrm{C}-8, \mathrm{C}-14$, and $\mathrm{C}-15$ carbons further confirmed the presence of a 7 -hydroxyl substituent in this diterpenoid. Irradiation at $\delta 3.72$ (H-7 α proton of 4) ${ }^{28}$ produced, among others, NOE enhancements in the signals of the $\mathrm{H}-9 \alpha(+15.1 \%), \mathrm{H}-15 \alpha(+2.2 \%)$, and $\mathrm{H}-15 \beta$ ($+4.1 \%$) protons. In this compound (4), the NOE observed between the $\mathrm{H}-7 \alpha$ and $\mathrm{H}-9 \alpha$ protons does not preclude a phyllodadane-type structure, because these two axial protons are on the same side of the plane of the molecule in both kaurane and phyllocladane stereoisomers. However, the NOEs observed between $\mathrm{H}-7 \alpha$ and both $\mathrm{H}_{2}-15$

Table 1. ${ }^{13} \mathrm{C}$ NMR Spectral (δ) Data for Compounds 3-5, 8, 9, 13, 17, and 19a

carbon	$3^{\text {b }}$	$4^{\text {b }}$	$5{ }^{\text {c }}$	$8^{\text {d }}$	$9{ }^{\text {b }}$	$13^{\text {d }}$	17 ${ }^{\text {d }}$	19 ${ }^{\text {d }}$
C-1	$41.2\left(\mathrm{CH}_{2}\right)$	$40.9\left(\mathrm{CH}_{2}\right)$	$41.4\left(\mathrm{CH}_{2}\right)$	40.6 (CH_{2})	$40.9\left(\mathrm{CH}_{2}\right)$	$40.2\left(\mathrm{CH}_{2}\right)$	40.6 ($\left.\mathrm{CH}_{2}\right)$	40.4 ($\left.\mathrm{CH}_{2}\right)$
C-2	$19.8\left(\mathrm{CH}_{2}\right)$	$19.7\left(\mathrm{CH}_{2}\right)$	$19.9\left(\mathrm{CH}_{2}\right)$	18.8 (CH_{2})	$19.8\left(\mathrm{CH}_{2}\right)$	18.8 (CH_{2})	18.9 (CH_{2})	18.8 (CH_{2})
C-3	38.6 (CH_{2})	38.5 (CH_{2})	38.7 (CH_{2})	$37.9\left(\mathrm{CH}_{2}\right)$	38.5 (CH_{2})	$37.8\left(\mathrm{CH}_{2}\right)$	$37.8\left(\mathrm{CH}_{2}\right)$	$37.78\left(\mathrm{CH}_{2}\right)$
C-4	44.1 (C)	43.83 (C)	43.8 (C)	43.8 (C)	43.8 (C)	43.6 (C)	43.8 (C)	43.8 (C)
C-5	57.0 (CH)	53.8 (CH)	54.3 (CH)	56.4 (CH)	53.7 (CH)	53.2 (CH)	56.7 (CH)	56.2 (CH)
C-6	$22.0\left(\mathrm{CH}_{2}\right)$	32.3 (CH_{2})	$31.2\left(\mathrm{CH}_{2}\right)$	$20.5\left(\mathrm{CH}_{2}\right)$	$31.4\left(\mathrm{CH}_{2}\right)$	$29.5\left(\mathrm{CH}_{2}\right)$	$20.8\left(\mathrm{CH}_{2}\right)$	$20.1\left(\mathrm{CH}_{2}\right)$
C-7	$36.1\left(\mathrm{CH}_{2}\right)$	74.55 (CH)	75.4 (CH)	$35.4\left(\mathrm{CH}_{2}\right)$	75.1 (CH)	75.2 (CH)	$34.9\left(\mathrm{CH}_{2}\right)$	$37.78\left(\mathrm{CH}_{2}\right)$
C-8	47.5 (C)	49.8 (C)	56.2 (C)	42.6 (C)	49.7 (C)	54.2 (C)	46.7 (C)	49.7 (C)
C-9	54.2 (CH)	55.1 (CH)	48.1 (CH)	49.4 (CH)	49.0 (CH)	47.3 (CH)	53.4 (CH)	46.2 (CH)
C-10	39.2 (C)	39.2 (C)	40.1 (C)	38.0 (C)	39.6 (C)	37.9 (C)	38.4 (C)	38.4 (C)
C-11	$23.5\left(\mathrm{CH}_{2}\right)$	$23.5\left(\mathrm{CH}_{2}\right)$	$19.5\left(\mathrm{CH}_{2}\right)$	$24.1\left(\mathrm{CH}_{2}\right)$	18.3 (CH_{2})	$24.9\left(\mathrm{CH}_{2}\right)$	$23.0\left(\mathrm{CH}_{2}\right)$	24.6 (CH_{2})
C-12	74.1 (CH)	74.58 (CH)	26.0 (CH_{2})	69.7 (CH)	$27.7\left(\mathrm{CH}_{2}\right)$	69.2 (CH)	73.3 (CH)	68.0 (CH)
C-13	46.9 (CH)	48.4 (CH)	44.7 (CH)	44.3 (CH)	39.0 (CH)	48.5 (CH)	46.1 (CH)	42.3 (CH)
C-14	$30.8\left(\mathrm{CH}_{2}\right)$	$25.9\left(\mathrm{CH}_{2}\right)$	$35.7\left(\mathrm{CH}_{2}\right)$	$25.7\left(\mathrm{CH}_{2}\right)$	$24.9\left(\mathrm{CH}_{2}\right)$	28.8 (CH_{2})	$30.1\left(\mathrm{CH}_{2}\right)$	36.6 (CH_{2})
C-15	83.1 (CH)	43.83 ($\left.\mathrm{CH}_{2}\right)$	134.6 (CH)	67.6 (CH)	67.0 (CH)	135.1 (CH)	83.0 (CH)	163.4 (CH)
C-16	157.3 (C)	152.3 (C)	143.0 (C)	59.7 (C)	59.5 (C)	144.2 (C)	155.5 (C)	147.1 (C)
C-17	$110.7\left(\mathrm{CH}_{2}\right)$	$106.4\left(\mathrm{CH}_{2}\right)$	$15.5\left(\mathrm{CH}_{3}\right)$	14.9 (CH_{3})	14.8 (CH_{3})	15.8 ($\left.\mathrm{CH}_{3}\right)$	$111.7\left(\mathrm{CH}_{2}\right)$	188.4 (CH)
C-18	$29.5\left(\mathrm{CH}_{3}\right)$	29.4 ($\left.\mathrm{CH}_{3}\right)$	29.2 (CH_{3})	28.7 ($\left.\mathrm{CH}_{3}\right)$	29.3 ($\left.\mathrm{CH}_{3}\right)$	28.6 (CH_{3})	28.8 (CH_{3})	28.7 ($\left.\mathrm{CH}_{3}\right)$
C-19	180.2 (C)	180.1 (C)	178.7 (C)	177.8 (C)	180.0 (C)	177.7 (C)	178.0 (C)	177.7 (C)
C-20	$14.9\left(\mathrm{CH}_{3}\right)$	$14.8\left(\mathrm{CH}_{3}\right)$	$16.1\left(\mathrm{CH}_{3}\right)$	$13.9\left(\mathrm{CH}_{3}\right)$	$15.9\left(\mathrm{CH}_{3}\right)$	13.3 ($\left.\mathrm{CH}_{3}\right)$	$13.9\left(\mathrm{CH}_{3}\right)$	13.3 (CH_{3})
$-\mathrm{OCOCH}_{3}$	170.1 (C)	170.1 (C)		170.3 (C)		170.6 (C)	170.4 (C)	170.1 (C)
$-\mathrm{OCOCH}_{3}$	$21.3\left(\mathrm{CH}_{3}\right)$	$21.4\left(\mathrm{CH}_{3}\right)$		$21.4\left(\mathrm{CH}_{3}\right)$		$21.6\left(\mathrm{CH}_{3}\right)$	$21.5\left(\mathrm{CH}_{3}\right)$	$21.4\left(\mathrm{CH}_{3}\right)$
$-\mathrm{COOCH}_{3}$				$51.2\left(\mathrm{CH}_{3}\right)$		$51.2\left(\mathrm{CH}_{3}\right)$	$51.2\left(\mathrm{CH}_{3}\right)$	$51.3\left(\mathrm{CH}_{3}\right)$

${ }^{\text {a }}$ At 100 MHz . All these assignments were in agreement with HSQC and HMBC spectra. ${ }^{\mathrm{b}}$ In pyridine- d_{5} solution. ${ }^{\mathrm{c}} \mathrm{In}$ acetone-d d_{6} solution. ${ }^{d} \mathrm{InCDCl} 3$ solution.
protons clearly established that 4 possessed a kauranetype structure, in which these hydrogens are on the same side of the molecule, whereas they are on opposite sides in the phyllocladane hydrocarbon skeleton. ${ }^{32}$ In addition, irradiation at $\delta 3.30$ ($\mathrm{H}-15 \beta$ proton of 4) caused a strong NOE enhancement ($+4.4 \%$) in the signal of $\mathrm{H}_{\mathrm{A}}-17$. Consequently, compound 4 was formulated as ent-12 β-acetoxy7β-hydroxykaur-16-en-19-oic acid. ${ }^{28}$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $5\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}\right)$ showed signals for a C-19 carboxyl group and a 7β-hydroxyl substituent oriented equatorially as in 4. This conclusion was supported by the HMBC spectrum of 5 , which displayed connectivities compatible only with the proposed structure (e.g., between the $\mathrm{H}-7 \alpha$ proton and the $\mathrm{C}-14$ and $\mathrm{C}-15$ carbons, and between the C-7 carbon and the $\mathrm{H}-5 \alpha$, $\mathrm{H}_{2}-6$, and $\mathrm{H}_{2}-14$ protons, as well as between the carboxyl carbon at $\mathrm{C}-19$ and the $\mathrm{H}_{2}-3, \mathrm{H}-5 \alpha$, and $\mathrm{Me}-18$ protons). I rradiation at the olefinic proton of $5(\delta 5.14, \mathrm{H}-15)$ caused NOE enhancements in the signals of the $\mathrm{H}-9 \alpha(+2.0 \%)$ and $\mathrm{H}-7 \alpha$ (+5.0\%) protons, thus confirming a kaurane-type structure for 5 and located its secondary hydroxyl group at the 7β-position. Therefore, compound 5 is ent- 7β-hy-droxykaur-15-en-19-oic acid. ${ }^{28}$

The kaur-15-ene derivative 6 was also found in the acetone extract of P. fruticosus, and it was purified as its methyl ester derivative $\mathbf{1 3}\left(\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this substance (13: methyl ent-12 β-acetoxy-7 β -hydroxykaur-15-en-19-oate) ${ }^{28}$ were similar to those of 4, showing characteristic signals for a kaur-15-ene derivative instead of the kaur-16-ene structure of 4. Moreover, the observed differences in the chemical shifts of the C-6-C$9, \mathrm{C}-12$, and $\mathrm{C}-14$ carbons of 13 and 4 (Table 1) further supported ${ }^{31}$ the structure of the former. The kaurane-type structure of $\mathbf{1 3}$ was also in agreement with the NOE observed for the $\mathrm{H}-9 \alpha$ signal ${ }^{28}$ ($+2.1 \%$ NOE enhancement) when the signal of the $\mathrm{H}-15$ proton ($\delta 5.19$) was irradiated.

Compound 7 was transformed into its methyl ester derivative $19\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}\right)$ by treatment with an ethereal solution of diazomethane. The IR and UV spectra of 19 showed absorptions typical for an α, β-unsaturated aldehyde function, and its kaur-15-en-17-al partial structure was supported ${ }^{39-42}$ by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. In
addition, the ${ }^{1} \mathrm{H}$ NMR spectra of 7 and $\mathbf{1 9}$, as well as the ${ }^{13} \mathrm{C}$ NMR spectrum of 19 (Table 1), revealed the presence of a 12β-acetoxyl substituent in both compounds, identical with that found in 13, and a carbomethoxyl group at the C-19 position, which is a carboxylic acid in 7. The HMBC spectrum and other spectroscopic data of 19 were in agreement with a structure of ent-12 β-acetoxy-17-oxokaur15 -en-19-oic acid ${ }^{28}$ for this new diterpenoid (7).
Compound 8 was characterized as its methyl ester derivative $14\left(\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 14 were very similar to those reported ${ }^{1}$ for $\mathbf{2 0}$. The observed differences between the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 14 and 20 were consistent with the presence in the former of a 12β-acetoxyl substituent instead of the C-12 methylene of the later. This was strongly supported by the HMBC spectrum of 14 (connectivities between the $\mathrm{C}-12$ carbon and the $\mathrm{H}-9 \alpha, \mathrm{H}_{2}-11, \mathrm{H}-13 \beta$, and $\mathrm{H}-14 \alpha$ protons) and by the observed downfield shifts of the C-11-C-13 ($\Delta \delta+5.9$, +42.7 , and +5.3 ppm , respectively) and upfield shifts of the $\mathrm{C}-14$ and $\mathrm{C}-16$ ($\Delta \delta-6.3$ and -1.7) carbons of $\mathbf{1 4}$ (Table 1) with respect to those of $\mathbf{2 0 .}{ }^{1}$ In addition, irradiation at $\delta 4.97$ (H-12 α of 14) produced strong NOE enhancements in the signals of the $\mathrm{H}-11 \alpha(+4.8 \%)$ and $\mathrm{Me}-17(+4.7 \%)$ protons, whereas on irradiating at $\delta 2.63(\mathrm{H}-15 \alpha$ of 14) the signals of the $\mathrm{H}-7 \alpha, \mathrm{H}-9 \alpha, \mathrm{H}-11 \alpha$, and $\mathrm{Me}-17$ protons were enhanced ($+1.8,+4.1,+1.1$, and $+3.3 \%$, respectively). These NOE results established $15 \beta, 16 \beta$-stereochemistry for the oxirane and confirmed a kaurane-type structure for 14, which must be methyl ent-12 β-acetoxy-15 $\beta, 16 \beta$-epoxykau-ran-19-oate. ${ }^{28}$

Compound $9\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}\right)$ possessed a 15,16-epoxyde [δ_{H} 2.91 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 \alpha$) and 1.41 (3H, s, Me-17); $\delta_{\mathrm{c}} 67.0$ (CH, $\mathrm{C}-15), 59.5(\mathrm{C}, \mathrm{C}-16)$, and $14.8\left(\mathrm{CH}_{3}, \mathrm{C}-17\right)$] as in 14 (see above) and 20. ${ }^{1}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 were in agreement with the presence of a C-19 carboxyl group and a secondary hydroxyl group at the C-7 β equatorial position such as in 4, 5, and 13. The ent-7 β-hydroxy- $15 \beta, 16 \beta$ -epoxykauran-19-oic acid ${ }^{28}$ structure for 9 was also supported by the observed HMBC cross-peaks between the $\mathrm{H}-7 \alpha$ proton and the C-5, C-6, C-8, C-9, C-14, and C-15 carbons and by the NOE caused on the $\mathrm{H}-7 \alpha, \mathrm{H}-9 \alpha$, and Me-17 proton signals ($+4.1,+3.9$, and $+2.3 \%$ NOE en-
hancement, respectively) when the $\mathrm{H}-15 \alpha$ proton of 9 (δ 2.91) was irradiated.

Compounds 1, 3-5, 7, 9, 10, 12-14, 17, and 19 were tested for antimi crobial activity against Gram-positive and Gram-negative bacteria and yeast strains (see Experimental Section). None of the compounds showed activity against Pseudomonas aeruginosa, Escherischia coli, and Candida al bicans strains. Against Staphylococcus aureus only the kaurane 19 showed moderate activity (MIC value $62.5 \mu \mathrm{~g} / \mathrm{mL}$).

Experimental Section

General Experimental Procedures. Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 MC polarimeter. UV spectra were recorded on a Perkin-EImer Lambda 2 UV/vis spectrophotometer. IR spectra were obtained on a Perkin-Elmer Spectrum One spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}(\mathbf{1}, \mathbf{2}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 2 - 1 4 , 1 6 ,}$ 17, and 19), pyridine-d $(3,4$, and 9$)$, or acetone-d ${ }_{6}(5)$ solution on a Varian INOVA 400 apparatus at 400 and 100 MHz , respectively, except for $\mathbf{7}$ (${ }^{1} \mathrm{H}$ NMR at 300 MHz , Varian INOVA 300 apparatus). Chemical shifts are reported with respect to residual $\mathrm{CHCl}_{3}(\delta 7.25)$ or pyridine-d $(\delta 8.71,7.55,7.19)$ or acetone $\mathrm{d}_{6}(\delta 2.04)$ signals for protons and to the solvent signals ($\delta_{\mathrm{CDCl}_{3}} 77.00$, $\delta_{\text {pyridine-d }} 149.9,135.5,123.5$, $\delta_{\text {acetone- } d_{6}}$ 206.1,29.8) for carbons. All the assignments for protons and carbons were in agreement with 2D COSY, TOCSY, gHSQC, gHMBC, and 1D NOESY spectra. Mass spectra were registered in the positive EI mode on a Hewlett-Packard 5973 instrument (70 eV). Elemental analyses were conducted on a Carlo Erba EA 1108 apparatus. Merck Si gel (70-230 mesh and 230-400 mesh, for gravity flow and flash chromatograpy, respectively) was used for column chromatography. Merck 5554 Kieselgel 60 F 254 sheets were used for TLC analysis. Petroleum ether (bp 50-70 ${ }^{\circ} \mathrm{C}$) was used for column chromatography.

Plant Material. Plectranthus fruticosus was cultivated in the Faculty of Pharmacy Hortum, Lisbon University, from seeds provided by the Herbarium of the Botanical Garden of Lisbon, Portugal. Aerial parts of this species were collected in J une 1999, and voucher specimens were deposited in the Herbarium of the Botanical Center of the "Instituto de I nvestigação Científica Tropical", Lisbon (ref C. Marques, $\mathrm{S} / \mathrm{N}^{\circ}$ LISC).

Extraction and Isolation. Dried and powdered P. fruticosus aerial parts (3.58 kg) were extracted with $\mathrm{Me}_{2} \mathrm{CO}$ as described previously. ${ }^{1}$ A part (100 g) of the total extract (444 g) was subjected to column chromatography (Si gel 70-230 mesh, 960 g) eluting successively with petroleum ether, petroleum ether-EtOAc (9:1, 3:1, and 1:1), and EtOAc. The constituents of the chromatographic fractions eluted with 9:1 and 3:1 petroleum ether-EtOAc have previously been reported, ${ }^{1}$ and those eluted with 1:1 petroleum ether-EtOAc and EtOAc were isolated as follows.

The residue $(20.3 \mathrm{~g})$ of the fractions eluted with $1: 1$ petroleum ether-EtOAc was rechromatographed (Si gel 230400 mesh column, 800 g , eluted with a petrol eum ether-EtOAc gradient from 8.5:1.5 to 3:7). The fraction eluted with 8.5:1.5 petroleum ether-EtOAc yiel ded impure $2(30 \mathrm{mg})$, which was rechromatographed (Si gel 230-400 mesh, $20 \mathrm{~g}, 7: 1$ petroleum ether-EtOAc as eluent), affording pure 2 ($12 \mathrm{mg}, \mathbf{0 . 0 0 1 5 \%}$ on dry plant material). The fraction eluted with 8.2:1.8 petroleum ether-EtOAc yielded apigenin-7,4'-dimethyl ether ${ }^{7}$ (5 -hydroxy-$7,4^{\prime}$-dimethoxyflavone, $3 \mathrm{mg}, 0.00037 \%$). The residue $(4 \mathrm{~g})$ of the fractions eluted with 4:1 petroleum ether-EtOAc was treated with an excess of an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at room temperature for 3 h and then subjected to col umn chromatography (Si gel $230-400$ mesh, 200 g , 9:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc as eluent), giving the following compounds in order of increasing polarity: $\mathbf{1 4}$ (methyl ester of $\mathbf{8}, 197 \mathrm{mg}, 0.024 \%$), a $2: 1$ mixture of the methyl esters of ursolic and oleanolic acids ${ }^{15}$ (255 mg ,
$0.032 \%)$, the aromadendrene derivative $\mathbf{1}(4 \mathrm{mg}, 0.0005 \%)$, and $1 \mathbf{0}^{1,2}(590 \mathrm{mg}, 0.073 \%)$. The residue (1.1 g) of the fractions eluted with 3:1 petroleum ether-EtOAc was rechromatographed (Si gel 230-400 mesh col umn, 120 g , eluted with 8.2: $1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc), yielding, in order of increasing polarity, genkwanin ${ }^{8,9}$ (5,4'-dihydroxy-7-methoxyflavone, 3 mg , 0.00037%), 7 ($28 \mathrm{mg}, 0.0034 \%$), and a mixture of 7 and 11. This mixture was methylated with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ and then subjected to col umn chromatography (Si gel 230-400 mesh, 40 g , eluted with 3:1 petrol eum ether-EtOAc), affording the methyl ester of $\mathbf{7 (1 9 , 2 6 ~ m g , ~ 0 . 0 0 3 2 \%) ~ a n d ~ t h e ~}$ previously known ${ }^{3-6}$ kaurane derivative 12 ($7 \mathrm{mg}, 0.0009 \%$). The fractions eluted with 7:3 petroleum ether-EtOAc contained 630 mg of a complex mixture of compounds. This mixture was rechromatographed (Si gel 230-400 mesh column, 140 g , eluted with $3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc), yielding the following compounds in order of increasing polarity: salvigenin ${ }^{10,11}$ (5-hydroxy-6,7,4'-trimethoxyflavone, $188 \mathrm{mg}, 0.023 \%$), 5 (3 mg, 0.00037\%), 3 (68 mg, 0.0084\%), cirsimaritin ${ }^{12}$ (5, $4^{\prime}-$ dihydroxy-6,7-dimethoxyflavone, $7 \mathrm{mg}, 0.0009 \%$), and 4 (37 $\mathrm{mg}, 0.0046 \%)$. Finally, the fractions eluted with $3: 7$ petroleum ether-EtOAc (720 mg) yielded, after rechromatography (Si gel 230-400 mesh column, $80 \mathrm{~g}, 97: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as eluent), 30 mg of an impure compound (6), which was treated with an excess of an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ for 3 h and then chromatographed (Si gel 230-400 mesh column, $20 \mathrm{~g}, 3: 1$ petroleum ether-EtOAc as eluent), giving pure $\mathbf{1 3}$ (25 mg , 0.0031\%).

The fractions from the initial chromatography eluted with EtOAc gave a residue (21.5 g). Rechromatography of this residue (Si gel 230-400 mesh column, $350 \mathrm{~g}, 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc as eluent) successively afforded eupatorin ${ }^{13,14}$ ($5,3^{\prime}$ -dihydroxy-6,7,4'-trimethoxyflavone, $19 \mathrm{mg}, 0.0024 \%$) and 9 ($100 \mathrm{mg}, 0.012 \%$).

The previously known flavones (apigenin-7,4'-dimethyl ether, ${ }^{7}$ genkwanin, ${ }^{8,9}$ salvigenin, ${ }^{10,11}$ cirsimaritin, ${ }^{12}$ and eupatorin ${ }^{13,14}$) were identified by their mp and ${ }^{1} \mathrm{H}$ NMR spectra, and the mixture of ursolic and oleanolic acid methyl esters was characterized by a careful study ${ }^{15}$ of the ${ }^{1} \mathrm{H}$ NMR spectrum and by comparison (TLC) with authentic samples.

10(14)-Aromadendrene-4 $\beta, 15$-diol (1): col orless needles (spontaneously on cooling), $\mathrm{mp} 73-75^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{18}+9.3^{\circ}$ (c 0.215, CHCl_{3}); IR (KBr) $v_{\text {max }} 3429,3076,2922,2862,1637,1456,1375$, 1090, 1026, $897 \mathrm{~cm}^{-1}$; 1 H NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right) \delta 4.70(1 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}_{14 \mathrm{~B}, 14 \mathrm{~A}}=\mathrm{J}_{14 \mathrm{~B}, 1 \alpha}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-14\right), 4.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{14 \mathrm{~A}, 14 \mathrm{~B}}=\right.$ $\left.1.8 \mathrm{~Hz}, \mathrm{~J}_{14 \mathrm{~A}, 9 \alpha}=0.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-14\right), 3.70\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{15 \mathrm{~B}, 15 \mathrm{~A}}=11.2\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{B}}-15\right), 3.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{15 \mathrm{~A}, 15 \mathrm{~B}}=11.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-15\right)$, $2.41(1 \mathrm{H}$, ddd, $\left.J^{9 \beta, 9 \alpha}=13.6 \mathrm{~Hz}, \mathrm{~J}_{9 \beta, 8 \alpha}=6.4 \mathrm{~Hz}, \mathrm{~J}{ }_{9 \beta, 8 \beta}=1.2 \mathrm{~Hz}, \mathrm{H}-9 \beta\right)$, $2.18\left(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}_{1 \alpha, 2 \alpha}=6.0 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \beta}=12.0 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 5 \beta}=10.7\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{1 \alpha, 14 \mathrm{~B}}=1.8 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right), 2.00\left(1 \mathrm{H}\right.$, dddd, J $\rho_{\alpha, 9 \beta}=13.6 \mathrm{~Hz}$, $\left.\int_{9 \alpha, 8 \alpha}=1.1 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 8 \beta}=12.3 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 14 \mathrm{~A}}=0.8 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.96$ (1 H , dddd, $\mathrm{J}_{8 \alpha, 8 \beta}=13.6 \mathrm{~Hz}, \mathrm{~J}_{8 \alpha, 7 \alpha}=6.0 \mathrm{~Hz}, \mathrm{~J}_{8 \alpha, 9 \alpha}=1.1 \mathrm{~Hz}$, $\left.\mathrm{J}_{8 \alpha, 9 \beta}=6.4 \mathrm{~Hz}, \mathrm{H}-8 \alpha\right), 1.91\left(1 \mathrm{H}\right.$, dddd, $\mathrm{J}_{2 \beta, 2 \alpha}=13.1 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \alpha}$ $\left.=12.0 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 3 \alpha}=13.0 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 3 \beta}=6.0 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 1.90(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 15-\mathrm{OH}$), $1.81\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{3 \beta, 3 \alpha}=13.0 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=1.2 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}\right.$ $=6.0 \mathrm{~Hz}, \mathrm{H}-3 \beta), 1.69\left(1 \mathrm{H}\right.$, dddd, J ${ }_{2 \alpha, 2 \beta}=13.1 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \alpha}=6.0$ $\left.\mathrm{Hz}, \mathrm{J}_{2 \alpha, 3 \alpha}=6.0 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \beta}=1.2 \mathrm{~Hz}, \mathrm{H}-2 \alpha\right), 1.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4 \beta-$ $\mathrm{OH}), 1.51(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 3 \alpha, 3 \beta=\mathrm{J} 3 \alpha, 2 \beta=13.0 \mathrm{~Hz}, \mathrm{~J} 3 \alpha, 2 \alpha=6.0 \mathrm{~Hz}$, $\mathrm{H}-3 \alpha), 1.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5 \beta, 1 \alpha}=10.7 \mathrm{~Hz}, \mathrm{~J}_{5 \beta, 6 \alpha}=11.2 \mathrm{~Hz}, \mathrm{H}-5 \beta\right.$), 1.05 (3H, s, Me-12), 1.04 (3H , s, Me-13), 0.98 (1H , dddd, J $8 \beta, 8 \alpha$ $=13.6 \mathrm{~Hz}, \mathrm{~J}_{8 \beta, 7 \alpha}=11.3 \mathrm{~Hz}, \mathrm{~J}_{8 \beta, 9 \alpha}=12.3 \mathrm{~Hz}, \mathrm{~J}_{8 \beta, 9 \beta}=1.2 \mathrm{~Hz}$, $\mathrm{H}-8 \beta), 0.73\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7 \alpha, 6 \alpha=9.5 \mathrm{~Hz}, \mathrm{~J} 7 \alpha, 8 \alpha=6.0 \mathrm{~Hz}, \mathrm{~J}{ }_{7 \alpha, 8 \beta}=\right.$ $11.3 \mathrm{~Hz}, \mathrm{H}-7 \alpha), 0.46\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}{ }_{6 \alpha, 5 \beta}=11.2 \mathrm{~Hz}, \mathrm{~J}{ }_{6 \alpha, 7 \alpha}=9.5 \mathrm{~Hz}\right.$, $\mathrm{H}-6 \alpha) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 152.7$ (C, C-10), 107.0 $\left(\mathrm{CH}_{2}, \mathrm{C}-14\right), 82.9(\mathrm{C}, \mathrm{C}-4), 68.3\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 53.9(\mathrm{CH}, \mathrm{C}-1)$, $52.4(\mathrm{CH}, \mathrm{C}-5)$, $38.6\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$, $37.5\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 28.54\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-12), 28.46$ ($\mathrm{CH}, \mathrm{C}-6$), $27.6(\mathrm{CH}, \mathrm{C}-7), 27.2\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 24.4$ ($\mathrm{CH}_{2}, \mathrm{C}-8$), 20.5 (C, C-11), $16.1\left(\mathrm{CH}_{3}, \mathrm{C}-13\right)$; EIMS m/z 236 [M] ${ }^{+}$ (1), 218 (29), 205 (100), 203 (52), 187 (61), 175 (25), 162 (30), 149 (44), 147 (44), 145 (39), 133 (44), 131 (52), 119 (55), 107 (55), 105 (61), 93 (58); anal. C 76.34\%, H 10.28\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$, C 76.23%, H 10.23\%.
ent-3 β-Acetoxylabda-8(17),127,14-trien-2 α-ol (2): ${ }^{28}$ amorphous white solid, $\mathrm{mp} 105-115{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{18}-16.5^{\circ}$ (c 0.291, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 234(3.82) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) \nu_{\text {max }}$

3437, 3082, 2939, 2851, 1736, 1643, 1439, 1371, 1246, 1057 1030, 958, $890 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.76(1 \mathrm{H}$ ddd, $\left.\mathrm{J}_{14,15 \mathrm{~A}}=10.8 \mathrm{~Hz}, \mathrm{~J}_{14,15 \mathrm{~B}}=17.2 \mathrm{~Hz}, \mathrm{~J}_{14,12}=0.8 \mathrm{~Hz}, \mathrm{H}-14\right)_{\text {) }}$ $5.28(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 12,11 \mathrm{~A}=\mathrm{J} 12,11 \mathrm{~B}=6.5 \mathrm{~Hz}, \mathrm{H}-12), 5.18(1 \mathrm{H}$, ddd $\mathrm{J}_{15 \mathrm{~B}, 15 \mathrm{~A}}=1.6 \mathrm{~Hz}$, J $15 \mathrm{~B}, 14=17.2 \mathrm{~Hz}, \mathrm{~J}_{15 \mathrm{~B}, 12}=0.8 \mathrm{~Hz}$, pro-Z HB 15), $5.09(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15 \mathrm{~A}, 15 \mathrm{~B}=\mathrm{J} 15 \mathrm{~A}, 12=1.6 \mathrm{~Hz}, \mathrm{~J} 15 \mathrm{~A}, 14=10.8 \mathrm{~Hz}$ pro-E $\left.\mathrm{H}_{\mathrm{A}}-15\right), 4.87\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}_{178,17 \mathrm{~A}}=\mathrm{J}_{178,7 \alpha}=\mathrm{J}_{178,9 \alpha}=1.6 \mathrm{~Hz}\right.$, pro-E H $\mathrm{B}-17$), $4.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3 \alpha, 2 \beta}=10.4 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 4.52(1 \mathrm{H}, \mathrm{q}$, $\mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}=\mathrm{J}_{17 \mathrm{~A}, 7 \alpha}=\mathrm{J}_{17 \mathrm{~A}, 9 \alpha}=1.6 \mathrm{~Hz}$, pro-Z H-17$), 3.81(1 \mathrm{H}$, ddd, $\left.\mathrm{J}_{2 \beta, 1 \alpha}=11.7 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \beta}=4.3 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 3 \alpha}=10.4 \mathrm{~Hz}, \mathrm{H}-2 \beta\right)_{\text {, }}$ $2.42\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}_{\mathrm{B}}-11\right), 2.40\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}{ }_{7 \beta, 7 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{7 \beta, 6 \alpha}=\right.$ $\left.2.4 \mathrm{~Hz}, \mathrm{~J}_{7 \beta, 6 \beta}=4.2 \mathrm{~Hz}, \mathrm{H}-7 \beta\right), 2.21\left(1 \mathrm{H}, \mathrm{dd}_{\mathrm{J}} \mathrm{J}_{\mathrm{I}, 1 \alpha}=12.6 \mathrm{~Hz}\right.$ $\left.\mathrm{J}_{1 \beta, 2 \beta}=4.3 \mathrm{~Hz}, \mathrm{H}-1 \beta\right), 2.19\left(1 \mathrm{H}, \mathrm{ddd}^{2} \mathrm{~J}_{11 \mathrm{~A}, 11 \mathrm{~B}}=17.5 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~A}, 9 \alpha}\right.$ $\left.=11.0 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~A}, 12}=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-11\right)$, $2.14(3 \mathrm{H}, \mathrm{s}, 3 \beta-\mathrm{OAc}), 2.00$ ($1 \mathrm{H}, \mathrm{br}$ ddd, $\mathrm{J}_{7 \alpha, 7 \beta}=13.2 \mathrm{~Hz}$, $\mathrm{J}_{7 \alpha, 6 \alpha}=5.2 \mathrm{~Hz}$, J ${ }_{7 \alpha, 6 \beta}=12.7 \mathrm{~Hz}$ $\mathrm{H}-7 \alpha), 1.76(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 16,12=1.2 \mathrm{~Hz}, \mathrm{Me}-16), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$ $\left.\mathrm{J}_{9 \alpha, 11 \mathrm{~A}}=11.0 \mathrm{~Hz}, \mathrm{~J} 9 \alpha, 11 \mathrm{~B}=3.3 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.70\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-6 \alpha\right)$, 1.58 (1H , br, $2 \alpha-\mathrm{OH}$), 1.38 ($1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-6 \beta$), 1.26 ($2 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-1 \alpha$ and H-5 $), 0.89$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 0.86 (3H, s, Me-19), 0.79 (3 H $\mathrm{s}, \mathrm{Me}-20)$; ${ }^{43}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 172.5\left(\mathrm{C}, \mathrm{OCOCH}_{3}\right)$ 146.9 (C, C-8), 133.7 (CH, C-14), 132.0 (C, C-13), 130.7 (CH $\mathrm{C}-12)$, $113.6\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 108.9\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 84.5(\mathrm{CH}, \mathrm{C}-3)$, 67.9 (CH , C-2), 56.9 (CH , C-9), 54.4 (CH, C-5), $46.3\left(\mathrm{CH}_{2}, \mathrm{C}-1\right)$ 40.1 (C, C-10), $39.3(\mathrm{C}, \mathrm{C}-4), 37.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.7\left(\mathrm{CH}_{3}, \mathrm{C}-18\right)$ $23.5\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 22.3\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 21.2\left(\mathrm{CH}_{3}, \mathrm{OCOCH}_{3}\right), 19.7$ $\left(\mathrm{CH}_{3}, \mathrm{C}-16\right), 17.5\left(\mathrm{CH}_{3}, \mathrm{C}-19\right), 15.4\left(\mathrm{CH}_{3}, \mathrm{C}-20\right)$; EIMS m/z 346 [M]+ (0.5), 331 (1), 286 (1), 271 (3), 253 (2), 187 (8), 149 (14) 137 (14), 135 (16), 133 (23), 109 (27), 107 (23), 43 (100); anal. C 76.41%, H 9.69\%, calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3}$, C 76.26%, H 9.89\%.
ent-12 β-Acetoxy-15 β-hydroxykaur-16-en-19-oic acid (3): $:^{28}$ colorless hexagonal plates (EtOAc-n-pentane), mp 244-246 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-58.5^{\circ}$ (c 0.301, MeOH); IR (KBr) $\nu_{\text {max }} 3415,3065$, 2950, 2850, 1740, 1703, 1636, 1449, 1371, 1228, 1014, 999, 964 $906 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine-d $\left.{ }_{5}, 400 \mathrm{MHz}\right) \delta 14.70(1 \mathrm{H}$, br, $19-\mathrm{COOH}), 5.90(1 \mathrm{H}, \mathrm{br}, 15 \beta-\mathrm{OH}), 5.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 178,17 \mathrm{~A}=1.2$ $\mathrm{Hz}, \mathrm{J}_{178,15 \alpha}=0.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-17$, cis hydrogen with respect to $\mathrm{C}-15$), $5.28\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}=1.2 \mathrm{~Hz}, \mathrm{~J}_{17 \mathrm{~A}, 15 \alpha}=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-17\right.$, trans hydrogen with respect to $\mathrm{C}-15), 4.97\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}_{12 \alpha, 11 \alpha}=4.5\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{12 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}=4.6 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right), 4.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-15 \alpha), 2.97$ (1 H , ddd, $\mathrm{J}_{13 \beta, 12 \alpha}=4.6 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \alpha}=5.0 \mathrm{~Hz}, \mathrm{~J}_{13 \beta 14 \beta}$ $=0.5 \mathrm{~Hz}, \mathrm{H}-13 \beta), 2.50\left(1 \mathrm{H}\right.$, dddd, $\mathrm{J}_{3 \beta, 3 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=4.1$ $\left.\mathrm{Hz}, \mathrm{J}_{3 \beta, 2 \beta}=3.6 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=0.8 \mathrm{~Hz}, \mathrm{H}-3 \beta\right), 2.32(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $\left.J_{14 \beta, 14 \alpha}=11.4 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta}=0.5 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 15 \alpha}=1.0 \mathrm{~Hz}, \mathrm{H}-14 \beta\right)$, $2.26\left(4 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \beta, \mathrm{H}-6 \alpha, \mathrm{H}-6 \beta\right.$, and $\left.\mathrm{H}-7 \beta\right)$, $1.98(3 \mathrm{H}, \mathrm{s}, 12 \beta-$ $\mathrm{OAc}), 1.85\left(2 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-7 \alpha\right.$ and $\left.\mathrm{H}-11 \alpha\right), 1.81\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-1 \beta\right)$, $1.78\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{11 \beta, 11 \alpha}=16.8 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 9 \alpha} \cong \mathrm{~J}_{11 \beta, 12 \alpha}<0.5 \mathrm{~Hz}\right.$, $\mathrm{H}-11 \beta), 1.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{14 \alpha, 14 \beta}=11.4 \mathrm{~Hz}, \mathrm{~J}_{14 \alpha, 13 \beta}=5.0 \mathrm{~Hz}\right.$ $\mathrm{H}-14 \alpha), 1.49(1 \mathrm{H}$, ddddd, J $2 \alpha, 2 \beta=14.0 \mathrm{~Hz}, \mathrm{~J} 2 \alpha, 1 \alpha=4.1 \mathrm{~Hz}, \mathrm{~J} 2 \alpha, 1 /$ $\left.=3.2 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \alpha}=4.4 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \beta}=4.1 \mathrm{~Hz}, \mathrm{H}-2 \alpha\right), 1.40(3 \mathrm{H}, \mathrm{s}$, Me-20), 1.38 (3H, s, Me-18), 1.31 (1H, br d, J $9 \alpha, 11 \alpha=8.8 \mathrm{~Hz}$ $\left.\mathrm{J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.18\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5 \alpha, 6 \alpha}=3.8 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=\right.$ $10.2 \mathrm{~Hz}, \mathrm{H}-5 \alpha), 1.08\left(1 \mathrm{H}, \operatorname{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\mathrm{J}_{3 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{3 \alpha, 2 \alpha}=\right.$ $4.4 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 0.82\left(1 \mathrm{H}, \mathrm{ddd}^{2} \mathrm{~J}_{1 \alpha, \beta \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=4.1 \mathrm{~Hz}\right.$ $\left.\mathrm{J}_{1 \alpha, 2 \beta}=12.8 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right) ;{ }^{43}{ }^{13} \mathrm{C}$ NMR (pyridine-d ${ }_{5}, 100 \mathrm{MHz}$), see Table 1; EIMS m/z 376 [M] ${ }^{+}$(1), 334 (1), 316 (100), 301 (38), 298 (20), 283 (17), 270 (30), 255 (19), 243 (12), 237 (15), 199 (11), 197 (13), 183 (10), 173 (14), 161 (25), 160 (20), 148 (30), 145 (25), 133 (24), 131 (29), 123 (27), 121 (34), 109 (34), 105 (40); anal. C 70.39%, H 8.61%, calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}, \mathrm{C}$ 70.18\%, H 8.57\%.
ent-12 β-Acetoxy-7 β-hydroxykaur-16-en-19-oic acid (4):28 colorless fine needles (EtOAc-n-pentane), mp 250-252 ${ }^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}{ }^{20}-52.1^{\circ}$ (c 0.313, MeOH); IR (KBr) $\nu_{\max } 3419,3071,2940$, 2873, 1736, 1691, 1635, 1467, 1372, 1238, 1028, 968, $876 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}^{2}$ NMR (pyridine $\left.\mathrm{d}_{5}, 400 \mathrm{MHz}\right) \delta 6.15(1 \mathrm{H}, \mathrm{br}, 7 \beta-\mathrm{OH}), 5.05$ $\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{17 \mathrm{~B}, 17 \mathrm{~A}}=1.2 \mathrm{~Hz}, \mathrm{~J}_{17 \mathrm{~B}, 15 \alpha}=0.5 \mathrm{~Hz}, \mathrm{~J}_{178,15 \beta}=2.3 \mathrm{~Hz}\right.$ $\mathrm{H}_{\mathrm{B}}-17$, trans hydrogen with respect to $\mathrm{C}-15$), 5.01 (1 H br dd, $\left.\mathrm{J}_{12 \alpha, 11 \alpha}=5.8 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}=5.0 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right)_{\text {, }}$ $4.95\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}=1.2 \mathrm{~Hz}, \mathrm{~J}_{17 \mathrm{~A}, 15 \alpha}=0.5 \mathrm{~Hz}, \mathrm{~J}_{17 \mathrm{~A}, 15 \beta}=2.3\right.$ $\mathrm{Hz}, \mathrm{H}_{\mathrm{A}}-17$, cis hydrogen with respect to $\left.\mathrm{C}-15\right), 3.72$ (1 H , dd, $\left.\mathrm{J}_{7 \alpha, 6 \alpha}=4.5 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \beta}=11.3 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 3.30\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}_{15 \beta, 15 \alpha}=\right.$ $\left.17.0 \mathrm{~Hz}, \mathrm{~J}_{15 \beta, 17 \mathrm{~A}}=\mathrm{J}_{15 \beta, 17 \mathrm{~B}}=2.3 \mathrm{~Hz}, \mathrm{H}-15 \beta\right), 2.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W}_{1 / 2}\right.$ $=9 \mathrm{~Hz}, \mathrm{H}-13 \beta), 2.62\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}{ }_{6 \alpha, 6 \beta}=13.6 \mathrm{~Hz}, \mathrm{~J}{ }_{6 \alpha, 5 \alpha}=2.4\right.$ $\left.\mathrm{Hz}, \mathrm{J}{ }_{6 \alpha, 7 \alpha}=4.5 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 2.57\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{6 \beta, 6 \alpha}=13.6 \mathrm{~Hz}, \mathrm{~J}{ }_{6 \beta, 5 \alpha}\right.$ $\left.=12.0 \mathrm{~Hz}, \mathrm{~J}_{6 \beta, 7 \alpha}=11.3 \mathrm{~Hz}, \mathrm{H}-6 \beta\right), 2.50\left(1 \mathrm{H}\right.$, dddd, $\mathrm{J}_{3 \beta, 3 \alpha}=$
$\left.13.5 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=2.8 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}=3.5 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=1.0 \mathrm{~Hz}, \mathrm{H}-3 \beta\right)$, 2.26 (1 H , dddt, J $2 \beta, 2 \alpha=13.6 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \alpha}=13.1 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 3 \alpha}=13.5$ $\left.\mathrm{Hz}, \mathrm{J}_{2 \beta, 1 \beta}=\mathrm{J}_{2 \beta, 3 \beta}=3.5 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 2.14(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-14 \alpha$ and $\mathrm{H}-14 \beta), 2.12\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 15 \alpha, 15 \beta=17.0 \mathrm{~Hz}, \mathrm{~J}_{15 \alpha, 17 \mathrm{~A}}=\mathrm{J} 15 \alpha, 17 \mathrm{~B}=\right.$ $0.5 \mathrm{~Hz}, \mathrm{H}-15 \alpha$), 2.01 (1 H , ddd, $\mathrm{J}_{11 \alpha, 11 \beta}=16.9 \mathrm{~Hz}, \mathrm{~J}_{11 \alpha, 9 \alpha}=9.2$ $\mathrm{Hz}, \mathrm{J}{ }_{11 \alpha, 12 \alpha}=5.8 \mathrm{~Hz}, \mathrm{H}-11 \alpha$), $1.95(3 \mathrm{H}, \mathrm{s}, 12 \beta-\mathrm{OAc}), 1.83$ (1 H , br d, $\left.\mathrm{J}_{11 \beta, 11 \alpha}=16.9 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 9 \alpha}=\mathrm{J}_{11 \beta, 12 \alpha}<0.5 \mathrm{~Hz}, \mathrm{H}-11 \beta\right), 1.76$ $\left(1 \mathrm{H}, \operatorname{dddd}, \mathrm{J}_{1 \beta, 1 \alpha}=13.1 \mathrm{~Hz}, \mathrm{~J}^{1 \beta, 2 \alpha} 103.0 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \beta}=3.5 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{1 \beta, 3 \beta}=1.0 \mathrm{~Hz}, \mathrm{H}-1 \beta\right), 1.50\left(1 \mathrm{H}\right.$, ddddd, $\mathrm{J}_{2 \alpha, 2 \beta}=13.6 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \alpha}$ $\left.=3.6 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \beta}=3.0 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \alpha}=4.2 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \beta}=2.8 \mathrm{~Hz}, \mathrm{H}-2 \alpha\right)_{\text {, }}$ 1.44 (3H , s, Me-20), 1.38 (3H, s, Me-18), 1.30 (1H, br d, J $9 \alpha, 11 \alpha$ $\left.=9.2 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.27\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5 \alpha, 6 \alpha}=2.4 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{5 \alpha, 6 \beta}=12.0 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 1.09\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\mathrm{J}_{3 \alpha, 2 \beta}=13.5 \mathrm{~Hz}\right.$, $\mathrm{J} 3 \alpha, 2 \alpha=4.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 0.82\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J} 1 \alpha, 2 \beta=13.1 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{1 \alpha, 2 \alpha}=3.6 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right) ;{ }^{13} \mathrm{C}$ NMR (pyridine- $\mathrm{d}_{5}, 100 \mathrm{MHz}$), see Table 1; EIMS m/z 376 [M] ${ }^{+}$(1), 358 (11), 343 (1), 340 (1), 334 (1), 316 (43), 301 (12), 298 (100), 283 (15), 273 (84), 253 (18), 237 (15), 227 (15), 197 (17), 183 (19), 171 (14), 162 (88), 145 (35), 144 (37), 133 (23), 131 (27), 123 (42), 119 (34), 117 (24), 109 (31), 107 (42), 105 (42); anal. C 70.02%, H 8.71%, calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5}$, C $70.18 \%, \mathrm{H} 8.57 \%$
ent-7 β-Hydroxykaur-15-en-19-oic acid (5): ${ }^{28}$ colorless fine needles (EtOAc-n-pentane), mp $266-268{ }^{\circ} \mathrm{C}$; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-58.2^{\circ}$ (c 0.146, MeOH); IR (KBr) $\nu_{\max } 3417,2932,2872,1697,1469$, 1295, 1251, 1237, 1193, 1057, 1000, 898, $811 \mathrm{~cm}^{-1}$ ' $^{1} \mathrm{H}$ NMR (acetoned $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 5.14\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}_{15,17}=1.5 \mathrm{~Hz}, \mathrm{H}-15\right)$, $3.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{7 \alpha, 6 \alpha}=3.9 \mathrm{~Hz}\right.$, J $\left.{ }_{7 \alpha, 6 \beta}=11.7 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 2.31(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{W}_{1 / 2}=8 \mathrm{~Hz}, \mathrm{H}-13 \beta\right), 2.12\left(1 \mathrm{H}, \mathrm{dddd} \mathrm{J}_{3 \beta, 3 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}\right.$ $\left.=2.9 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}=3.4 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=1.3 \mathrm{~Hz}, \mathrm{H}-3 \beta\right), 2.00\left(2 \mathrm{H}, \mathrm{m}^{*}\right.$, $\mathrm{H}-6 \alpha$ and $\mathrm{H}-14 \alpha), 1.91\left(1 \mathrm{H}, \mathrm{dtt}, \mathrm{J}_{2 \beta, 2 \alpha}=13.4 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \alpha}=\mathrm{J}_{2 \beta, 3 \alpha}\right.$ $\left.=13.2 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \beta}=\mathrm{J} 2 \beta, 3 \beta=3.4 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 1.84\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-1 \beta\right)$, $1.79\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{6 \beta, 6 \alpha}=13.1 \mathrm{~Hz}, \mathrm{~J}_{6 \beta, 5 \alpha}=12.6 \mathrm{~Hz}, \mathrm{~J}_{6 \beta, 7 \alpha}=11.7\right.$ $\mathrm{Hz}, \mathrm{H}-6 \beta), 1.67$ (3H, d, J $17,15=1.5 \mathrm{~Hz}, \mathrm{Me}-17$), 1.61 (1 H , br d, $\left.\mathrm{J}_{14 \beta, 14 \alpha}=10.2 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-14 \beta\right), 1.56\left(2 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-11 \alpha\right.$ and $\mathrm{H}-11 \beta), 1.50\left(2 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-12 \alpha\right.$ and $\left.\mathrm{H}-12 \beta\right), 1.38$ (1 H , ddddd, $\mathrm{J}_{2 \alpha, 2 \beta}=13.4 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \alpha}=3.9 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \beta}=3.1 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \alpha}=4.2$ $\left.\mathrm{Hz}, \mathrm{J}_{2 \alpha, 3 \beta}=2.9 \mathrm{~Hz}, \mathrm{H}-2 \alpha\right), 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} 18), 1.11$ (1H, dd, $\left.J_{5 \alpha, 6 \alpha}=2.1 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=12.6 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 1.00\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\right.$ $\left.\mathrm{J}_{3 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{3 \alpha, 2 \alpha}=4.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20)$, $0.93\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}{ }_{9 \alpha, 11 \alpha}=7.8 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 0.79$ $\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J}_{1 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=3.9 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right) ;{ }^{43}{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}, 100 \mathrm{MHz}$), see Table 1; EIMS m/z 318 [M] ${ }^{+}$ (65), 303 (15), 300 (14), 290 (3), 285 (5), 272 (22), 229 (11), 223 (11), 207 (10), 164 (21), 157 (11), 147 (26), 131 (21), 123 (61), 121 (54), 118 (43), 109 (51), 107 (52), 105 (40), 94 (100); anal. C 75.30%, H 9.64\%, calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}, \mathrm{C} 75.43 \%, \mathrm{H} 9.50 \%$.
ent-12 β-Acetoxy-17-oxokaur-15-en-19-oic acid (7): ${ }^{28}$ amorphous white solid, $\mathrm{mp} 90-100{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-37.2^{\circ}$ (c 0.326 CHCl_{3}); IR (K Br) $v_{\max } 3426,2930,2851,2725,1733,1693,1678$ 1607, 1445, 1369, 1238, 1209, 1027, 986, 974, 854, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.70(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17), 6.61(1 \mathrm{H}, \mathrm{s}$, H-15), 4.91 (1H, br dd, J $12 \alpha, 11 \alpha=6.2 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}$ $=3.4 \mathrm{~Hz}, \mathrm{H}-12 \alpha), 3.08\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\mathrm{J}_{13 \beta, 12 \alpha}=3.4 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \alpha}=$ $4.2 \mathrm{~Hz}, \mathrm{H}-13 \beta)$, $2.50\left(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}_{14 \beta, 14 \alpha}=11.3 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta} \cong 0\right.$ $\mathrm{Hz}, \mathrm{H}-14 \beta), 2.02(3 \mathrm{H}, \mathrm{s} 12 \beta-\mathrm{OAc}), 1.26$ (3H, s, Me-18), 1.01 (3H, s, Me-20); EIMS m/z 374 [M]+ (3), 332 (27), 314 (52), 299 (18), 268 (59), 161 (37), 147 (32), 146 (31), 133 (36), 131 (30), 121 (80), 119 (40), 117 (35), 109 (47), 107 (45), 43 (100).
ent-7 β-Hydroxy-15 $\beta, 16 \beta$-epoxykauran-19-oic acid (9):28 col orless fine needles (EtOAc-n-pentane), $\mathrm{mp} 246-248{ }^{\circ} \mathrm{C}$ and $285-290^{\circ} \mathrm{C}$ dec; $[\alpha]_{\mathrm{D}}{ }^{20}-41.0^{\circ}$ (c $0.441, \mathrm{MeOH}$); IR (KBr) $v_{\text {max }}$ 3417, 2928, 2869, 1702, 1470, 1251, 1229, 1198, 1044, 903, 842, $790 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (pyridine ${ }_{5}, 400 \mathrm{MHz}$) $\delta 3.98$ (1 H , dd, J $7_{\alpha, 6 \alpha}$ $\left.=4.0 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \beta}=11.5 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right)$, $2.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 \alpha), 2.52$ (1H, ddd, $\mathrm{J}_{6 \alpha, 6 \beta}=13.4 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 5 \alpha}=2.2 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \alpha}=4.0 \mathrm{~Hz}$, $\mathrm{H}-6 \alpha), 2.47\left(1 \mathrm{H}, \operatorname{dddd}, \mathrm{J}_{3 \beta, 3 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=4.1 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}\right.$ $\left.=3.7 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=1.1 \mathrm{~Hz}, \mathrm{H}-3 \beta\right), 2.39\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}_{6 \beta, 6 \alpha}=13.4 \mathrm{~Hz}\right.$, $\left.\int_{6 \beta, 5 \alpha}=J_{6 \beta, 7 \alpha}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \beta\right), 2.26\left(1 \mathrm{H} q t, \int_{2 \beta, 2 \alpha}=\mathrm{J}_{2 \beta, 1 \alpha}=\right.$ $\left.\int_{2 \beta, 3 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \beta}=\mathrm{J}_{2 \beta, 3 \beta}=3.7 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 2.15(1 \mathrm{H}, \mathrm{dd}$ $\left.\int_{14 \alpha, 14 \beta}=11.0 \mathrm{~Hz}, \mathrm{~J}_{14 \alpha, 13 \beta}=5.4 \mathrm{~Hz}, \mathrm{H}-14 \alpha\right), 2.07(1 \mathrm{H}$, ddd, $\int_{13 \beta, 12 \alpha}=4.9 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 12 \beta}=2.7 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \alpha}=5.4 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \beta} \simeq$ $0 \mathrm{~Hz}, \mathrm{H}-13 \beta$), 1.86 (dddd, $\mathrm{J}^{1 \beta, 1 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \alpha}=3.2 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \beta}$ $\left.=3.7 \mathrm{~Hz}, \mathrm{~J}^{1 \beta, 3 \beta}=1.1 \mathrm{~Hz}, \mathrm{H}-1 \beta\right), 1.52\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \alpha\right), 1.50(4 \mathrm{H}$, $\mathrm{m}^{*}, \mathrm{H}-11 \alpha, \mathrm{H}-11 \beta, \mathrm{H}-12 \alpha$, and $\mathrm{H}-12 \beta$), 1.41 (3H, s, Me-17), $1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.30\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{14 \beta, 14 \alpha}=11.0 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta}\right.$
$\cong 0 \mathrm{~Hz}, \mathrm{H}-14 \beta), 1.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5 \alpha, 6 \alpha}=2.2 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=11.5 \mathrm{~Hz}\right.$, $\mathrm{H}-5 \alpha)$, $1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20)$, $1.14(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9 \alpha, 11 \alpha=7.0 \mathrm{~Hz}$, $\left.\mathrm{J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.07\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\mathrm{J}_{3 \alpha, 2 \beta}=13.2 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{3 \alpha, 2 \alpha}=4.3 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.86\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J}_{1 \alpha, 2 \beta}=13.2 \mathrm{~Hz}\right.$, $\mathrm{J}_{1 \alpha, 2 \alpha}=3.9 \mathrm{~Hz}, \mathrm{H}-1 \alpha$); ${ }^{43}{ }^{13} \mathrm{C}$ NMR (pyridine $\mathrm{d}_{5}, 100 \mathrm{MHz}$), see Table 1; ElMS m/z 334 [M] ${ }^{+}$(100), 319 (10), 316 (65), 301 (25), 289 (44), 271 (38), 255 (32), 159 (26), 151 (35), 149 (29), 147 (34), 145 (33), 137 (52), 136 (57), 135 (56), 133 (44), 131 (34), 125 (31), 123 (71), 121 (44), 119 (44), 109 (58), 107 (63), 43 (82); anal. C 71.96\%, H 8.89\%, calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}, \mathrm{C} 71.82 \%$, H 9.04\%.
ent-Labda-8(17),12Z,14-triene-2 $\alpha, 3 \beta$-diol (10):28 amorphous white solid, $\mathrm{mp} 74-80^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-22.4^{\circ}$ (c $0.49, \mathrm{CHCl}_{3}$); IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass spectra identical to those reported ${ }^{2}$ for the compound isolated from Croton joufra [mp $\left.72-74{ }^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{25}-18.24^{\circ}\left(\mathrm{c} 0.34, \mathrm{CHCl}_{3}\right)\right]$ and for the ent-2 $\alpha-$ deacetyl derivative of $\mathbf{1 5}\left[\mathrm{mp} 76-80^{\circ} \mathrm{C}\right.$; $[\alpha]_{\mathrm{D}}{ }^{20}-23.7^{\circ}$ (c 0.313, $\left.\mathrm{CHCl}_{3}\right)$]. ${ }^{1}$

Methyl ent-12 β-hydroxykaur-16-en-19-oate (12):28 obtained by methylation of 11; col orless thick oil; $[\alpha]_{D}{ }^{18}-57.1^{\circ}$ (c $0.621, \mathrm{CHCl}_{3}$); IR, ${ }^{1} \mathrm{H} \mathrm{NMR}$, and mass spectra identical to those reported previously. ${ }^{3-6}$ Lit.: thick oil, ${ }^{3,5}$ no $[\alpha]_{D}$ value has previously been reported. ${ }^{3-6}$ F or ent-12 β-hydroxykaur-16-en-19-oic acid: $[\alpha]_{\mathrm{D}}{ }^{24}-44.7^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{5}$

Methyl ent-12 β-acetoxy-7 β-hydroxykaur-15-en-19-oate (13): 2^{28} colorless prisms (EtOAc-n-pentane), mp $113-115{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{18}-14.8^{\circ}\left(\mathrm{c} 0.446, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3542,3021,2943$, $1723,1708,1635,1467,1437,1369,1241,1155,1034,1016$, 994, 965, $817 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.19(1 \mathrm{H}$, $\left.q d, \mathrm{~J}_{15,17}=1.6 \mathrm{~Hz}, \mathrm{~J}_{15,14 \beta}=0.8 \mathrm{~Hz}, \mathrm{H}-15\right), 4.94\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{12 \alpha, 11 \alpha}\right.$ $\left.=6.9 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}=1.0 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}=3.2 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right), 3.63(3 \mathrm{H}$, $\mathrm{s}, 19-\mathrm{COOMe}), 3.60\left(1 \mathrm{H}\right.$, dd, $\mathrm{J}_{7 \alpha, 6 \alpha}=4.0 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \beta}=12.4 \mathrm{~Hz}$, $\mathrm{H}-7 \alpha), 2.48\left(1 \mathrm{H}\right.$, br dd, $\mathrm{J}_{13 \beta, 12 \alpha}=3.2 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \alpha}=4.0 \mathrm{~Hz}, \mathrm{~J}_{13 \beta, 14 \beta}$ $\cong 0 \mathrm{~Hz}, \mathrm{H}-13 \beta), 2.17\left(1 \mathrm{H}\right.$, dddd, $\mathrm{J}_{3 \beta, 3 \alpha}=13.5 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=4.2$ $\left.\mathrm{Hz}, \mathrm{J}_{3 \beta, 2 \beta}=3.8 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=1.6 \mathrm{~Hz}, \mathrm{H}-3 \beta\right), 2.07\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{6 \alpha, 6 \beta}\right.$ $\left.=13.1 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 5 \alpha}=1.8 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \alpha}=4.0 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 2.02(3 \mathrm{H}, \mathrm{s}$, 12β-OAc), 1.97 (1H, ddd, $\mathrm{J}_{11 \alpha, 11 \beta}=17.0 \mathrm{~Hz}, \mathrm{~J}_{11 \alpha, 9 \alpha}=9.9 \mathrm{~Hz}$, $\left.\mathrm{J}_{11 \alpha, 12 \alpha}=6.9 \mathrm{~Hz}, \mathrm{H}-11 \alpha\right), 1.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}_{14 \beta, 14 \alpha}=11.7 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{14 \beta, 13 \beta} \cong 0 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 15}=0.8 \mathrm{~Hz}, \mathrm{H}-14 \beta\right), 1.80(1 \mathrm{H}$, dddt, J $2 \beta, 2 \alpha$ $=\int_{2 \beta, 3 \alpha}=13.4 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \beta}=\mathrm{J}_{2 \beta, 3 \beta}=3.8 \mathrm{~Hz}$, $\mathrm{H}-2 \beta), 1.77\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{17,15}=1.6 \mathrm{~Hz}, \mathrm{Me}-17\right), 1.75\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{6 \beta, 6 \alpha}\right.$ $\left.=13.1 \mathrm{~Hz}, \mathrm{~J}_{6 \beta, 5 \alpha}=12.5 \mathrm{~Hz}, \mathrm{~J}_{6 \beta, 7 \alpha}=12.4 \mathrm{~Hz}, \mathrm{H}-6 \beta\right), 1.70(1 \mathrm{H}$, dd, $\mathrm{J}_{14 \alpha, 14 \beta}=11.7 \mathrm{~Hz}, \mathrm{~J}_{14 \alpha, 13 \beta}=4.0 \mathrm{~Hz}, \mathrm{H}-14 \alpha$), 1.68 (1 H , dddd, $\mathrm{J}_{1 \beta, 1 \alpha}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \alpha}=3.5 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \beta}=3.8 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 3 \beta}=1.6$ $\mathrm{Hz}, \mathrm{H}-1 \beta), 1.56(1 \mathrm{H}$, br $\mathrm{s}, 7 \beta-\mathrm{OH}), 1.53\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\mathrm{J}_{11 \beta, 11 \alpha}=$ $\left.17.0 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 9 \alpha}<0.5 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 12 \alpha}=1.0 \mathrm{~Hz}, \mathrm{H}-11 \beta\right), 1.40(1 \mathrm{H}$, ddddd, $\mathrm{J}_{2 \alpha, 2 \beta}=13.4 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \alpha}=4.1 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 1 \beta}=3.5 \mathrm{~Hz}, \mathrm{~J}_{2 \alpha, 3 \alpha}$ $\left.=4.3 \mathrm{~Hz}, \mathrm{~J}{ }_{2 \alpha, 3 \beta}=4.2 \mathrm{~Hz}, \mathrm{H}-2 \alpha\right), 1.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 1.10(1 \mathrm{H}$, br d, J ${ }_{9 \alpha, 11 \alpha}=9.9 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha$), 1.07 (1H, dd, $\left.J_{5 \alpha, 6 \alpha}=1.8 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=12.5 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 0.96\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\right.$ $\left.\mathrm{J}_{3 \alpha, 2 \beta}=13.5 \mathrm{~Hz}, \mathrm{~J}_{3 \alpha, 2 \alpha}=4.3 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20)$, $0.72\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J}_{1 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=4.1 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$, see Table 1; El MS m/z $390[\mathrm{M}]^{+}$ (10), 375 (1), 372 (1), 348 (2), 330 (18), 315 (12), 312 (32), 287 (14), 271 (13), 253 (14), 237 (24), 162 (45), 145 (56), 144 (49), 131 (33), 123 (89), 121 (42), 119 (48), 109 (80), 107 (66), 43 (100); anal. C 70.81\%, H 8.69\%, calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}, \mathrm{C} 70.74 \%$, H 8.78\%.

Methyl ent-12 β-acetoxy-15 $\beta, 16 \beta$-epoxykauran-19-oate (14): 2^{28} colorless prisms (EtOAc-n-hexane), mp 195-196 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-17.4^{\circ}\left(\mathrm{c} 1.196, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3010,2998,2951$, 1720, 1434, 1363, 1239, 1157, 1029, 990, $851 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.97\left(1 \mathrm{H}\right.$, ddd, $\mathrm{J}_{12 \alpha, 11 \alpha}=4.8 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}=$ $\left.1.9 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}=4.1 \mathrm{~Hz}, \mathrm{H}-12 \alpha\right), 3.63(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{COOMe}), 2.63$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 \alpha), 2.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 13 \beta, 12 \alpha=\mathrm{J} 13 \beta, 14 \alpha=4.1 \mathrm{~Hz}, \mathrm{~J}_{13 \beta 14 \beta} \cong\right.$ $0 \mathrm{~Hz}, \mathrm{H}-13 \beta), 2.16(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3 \beta, 3 \alpha=13.3 \mathrm{~Hz}, \mathrm{~J} 3 \beta, 2 \alpha=4.2 \mathrm{~Hz}$, $\left.\mathrm{J}_{3 \beta, 2 \beta}=3.6 \mathrm{~Hz}, \mathrm{H}-3 \beta\right), 2.01(3 \mathrm{H}, \mathrm{s}, 12 \beta-\mathrm{OAc}), 1.82\left(1 \mathrm{H}, \mathrm{m}^{*}\right.$, $\mathrm{H}-6 \alpha), 1.78\left(4 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \beta, \mathrm{H}-7 \beta, \mathrm{H}-11 \alpha\right.$, and $\left.\mathrm{H}-14 \beta\right)$, $1.71(1 \mathrm{H}$, ddd, $J_{1 \beta, 1 \alpha}=13.4 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \alpha}=4.2 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \beta}=3.6 \mathrm{~Hz}, \mathrm{H}-1 \beta$), 1.63 (1H, $\left.\mathrm{m}^{*}, \mathrm{H}-11 \beta\right)$, $1.61\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-6 \beta\right)$, 1.47 (1H, ddd, J $7 \alpha, 7 \beta$ $\left.=13.3 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \alpha}=2.4 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \beta}=12.0 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 1.43(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-17), 1.39(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 2 \alpha, 2 \beta=13.1 \mathrm{~Hz}, \mathrm{~J} 2 \alpha, 1 \alpha \cong \mathrm{~J} 2 \alpha, 1 \beta \cong \mathrm{~J} 2 \alpha, 3 \alpha$ $\cong \mathrm{J} 2 \alpha, 3 \beta \cong 4 \mathrm{~Hz}, \mathrm{H}-2 \alpha), 1.23(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9 \alpha, 11 \alpha=9.6 \mathrm{~Hz}, \mathrm{~J} 9 \alpha, 11 \beta$ $<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha$), 1.16 (3H, s, Me-18), 1.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}{ }_{5 \alpha, 6 \alpha}=1.4$ $\left.\mathrm{Hz}, \mathrm{J}_{5 \alpha, 6 \beta}=11.5 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 0.98\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\mathrm{J}_{3 \alpha, 2 \beta}=13.3\right.$
$\left.\mathrm{Hz}, \mathrm{J}_{3 \alpha, 2 \alpha}=4.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{14 \alpha, 14 \beta}=12.0 \mathrm{~Hz}\right.$, $\left.J_{14 \alpha, 13 \beta}=4.1 \mathrm{~Hz}, \mathrm{H}-14 \alpha\right), 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20), 0.79(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 1 \alpha, 1 \beta$ $\left.\left.=\mathrm{J}_{1 \alpha, 2 \beta}=13.4 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=4.1 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right)\right)^{43}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz), see Table 1; ElMS m/z 390 [M] ${ }^{+}$(5), 375 (1), 347 (100), 331 (27), 330 (30), 315 (17), 287 (42), 271 (41), 255 (20), 227 (29), 149 (25), 147 (29), 145 (25), 135 (36), 131 (26), 121 (57), 119 (26), 109 (31), 107 (30), 43 (87); anal. C 70.81\%, H 8.92\%, calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$, C 70.74\%, H 8.78\%.

Preparation of Compound 10 from Compound 2. A stirred solution of $2(8 \mathrm{mg}, 0.023 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ was treated with an ethanolic solution of $\mathrm{KOH}(8 \%, w / v, 1.5 \mathrm{~mL}$, 2.14 mmol) at room temperature for 18 h . Then, water (10 mL) was added to the reaction and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \times 4 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the solvents removed in vacuo, yielding a residue ($4 \mathrm{mg}, 0.013 \mathrm{mmol}, 56.5 \%$) of pure 10: ${ }^{1,2}$ amorphous white solid, $\mathrm{mp} 70-78^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-21.8^{\circ}$ (c 0.201, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) and mass spectra identical to those obtained for 3 (see above).

Benzoylation of Compound $10^{1,2}$ to Give ent-Labda-8(17),12Z,14-triene-2 $2,3 \beta$-dibenzoate (16). 28 To a solution of 10 ($40 \mathrm{mg}, 0.131 \mathrm{mmol}$) in anhydrous pyridine (4 mL) was added an excess of benzoyl chloride ($50 \mathrm{mg}, 0.355 \mathrm{mmol}$), and the reaction mixture was left at room temperature for 5 h . Water (20 mL) was added, and the reaction mixture was stirred for 30 min and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20$ mL). The extract was washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \times 10 \mathrm{~mL})$, then with water $(2 \times 10 \mathrm{~mL})$, and finally dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and the sol vents were removed in vacuo. The residue (60 mg) was subjected to col umn chromatography [Si gel 230-400 mesh, 10 g , petroleum etherEtOAc (49:1) as eluent], yielding pure 16 ($43 \mathrm{mg}, 0.084 \mathrm{mmol}$, $63.8 \%)$: amorphous white powder, $\mathrm{mp} 75-85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{19}+28.2^{\circ}$ (c $0.305, \mathrm{CHCl}_{3}$); CD $\Delta \epsilon_{248}-6.6, \Delta \epsilon_{243} 0, \Delta \epsilon_{235}+12.5, \Delta \epsilon_{229} 0$, $\Delta \epsilon_{224}-10.3$ (C 10 ${ }^{-3} \mathrm{M}$, dioxane); IR (KBr) $v_{\max } 3087$, 2973, 2944, 2857, 1722, 1644, 1602, 1584, 1450, 1314, 1280, 1111, 1069, 1026, 993, 953, 895, $709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCI, 400 $\mathrm{MHz}) \delta 6.73\left(1 \mathrm{H}, \mathrm{ddd}^{\prime} \mathrm{J}_{14,15 \mathrm{~A}}=10.8 \mathrm{~Hz}, \mathrm{~J}_{14,15 \mathrm{~B}}=17 . \mathrm{JHz}_{\mathrm{H}} \mathrm{J}_{14,12}\right.$ $=0.7 \mathrm{~Hz}, \mathrm{H}-14), 5.47\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{2 \beta, 1 \alpha}=11.5 \mathrm{~Hz}, \mathrm{~J}_{2 \beta, 1 \beta}=4.5\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{2 \beta, 3 \alpha}=10.4 \mathrm{~Hz}, \mathrm{H}-2 \beta\right), 5.25\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3 \alpha, 2 \beta}=10.4 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right)$, $5.24\left(1 \mathrm{H}\right.$, br $\left.\mathrm{t}, \mathrm{J}_{12,11 \mathrm{~A}}=\mathrm{J}_{12,11 \mathrm{~B}}=6.4 \mathrm{~Hz}, \mathrm{H}-12\right), 5.15(1 \mathrm{H}$, ddd, $\int_{15 B, 15 A}=1.6 \mathrm{~Hz}, \int_{15 B, 14}=17.3 \mathrm{~Hz}, \mathrm{~J}_{15 \mathrm{~B}, 12}=0.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-15$, pro-Z hydrogen), $5.07\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}_{15 \mathrm{~A}, 14}=10.8 \mathrm{~Hz}, \mathrm{~J}_{15 \mathrm{~A}, 15 \mathrm{~B}}=\mathrm{J} 15 \mathrm{~A}, 12\right.$ $=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-15$, pro-E hydrogen), $4.91\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}=\mathrm{J}_{17 \mathrm{~B}, 7 \alpha}\right.$ $=\int_{17 \mathrm{~B}, 9 \alpha}=1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-17$, pro-E hydrogen), $4.54\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}\right.$ $=\mathrm{J}_{17 \mathrm{~A}, 7 \alpha}=\mathrm{J}_{17 \mathrm{~A}, 9 \alpha}=1.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-17$, pro-Z hydrogen), $2.45(1 \mathrm{H}$, ddd, $\left.\mathrm{J}_{7 \beta, 7 \alpha}=13.0 \mathrm{~Hz}, \mathrm{~J}_{7 \beta, 6 \alpha}=2.4 \mathrm{~Hz}, \mathrm{~J}_{7 \beta, 6 \beta}=4.2 \mathrm{~Hz}, \mathrm{H}-7 \beta\right)$, $2.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1 \beta, 1 \alpha}=12.4 \mathrm{~Hz}, \mathrm{~J}_{1 \beta, 2 \beta}=4.5 \mathrm{~Hz}, \mathrm{H}-1 \beta\right), 2.35(1 \mathrm{H}$, ddd, $\mathrm{J}_{11 \mathrm{~B}, 11 \mathrm{~A}}=17.5 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~B}, 9 \alpha}=11.2 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~B}, 12}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}^{-}}$ 11), 2.25 (1 H , ddd, $\mathrm{J}_{11 \mathrm{~A}, 11 \mathrm{~B}}=17.5 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~A}, 9 \alpha}=3.2 \mathrm{~Hz}, \mathrm{~J}_{11 \mathrm{~A}, 12}$ $\left.=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-11\right), 2.06\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, $\mathrm{J}_{7 \alpha, 7 \beta}=13.0 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \alpha}=$ $\left.4.0 \mathrm{~Hz}, \mathrm{~J}{ }_{7 \alpha, 6 \beta}=12.0 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 1.85\left(1 \mathrm{H}\right.$, br dd, $\mathrm{J}_{9 \alpha, 11 \mathrm{~A}}=3.2$ $\left.\mathrm{Hz}, \mathrm{J}_{9 \alpha, 11 \mathrm{~B}}=11.2 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right), 1.79\left(1 \mathrm{H}\right.$, dddd, $\mathrm{J}_{6 \alpha, 6 \beta}=12.9 \mathrm{~Hz}$, $\left.\mathrm{J}_{6 \alpha, 5 \alpha}=2.8 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \alpha}=4.0 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \beta}=2.4 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 1.75$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{16,12}=1.1 \mathrm{~Hz}, \mathrm{Me}-16\right), 1.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1 \alpha, 1 \beta}=12.4 \mathrm{~Hz}\right.$, $\left.\int_{1 \alpha, 2 \beta}=11.5 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right), 1.48(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha$ and $\mathrm{H}-6 \beta$, these assignments were in agreement with the HSQC spectrum), 1.09 (3H, s, Me-19), 1.01 (3H, s, Me-18), 0.99 (3H, s, Me-20), $2 \alpha-O B z: 7.89\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 7.32$ ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$), $7.44(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4$, $\left.1.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3 \beta$-OBz: $7.96\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,1.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right.$ and $\left.\mathrm{H}-6^{\prime \prime}\right), 7.34\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right.$ and $\left.\mathrm{H}-5^{\prime \prime}\right), 7.46(1 \mathrm{H}$, $\left.\mathrm{tt}, \mathrm{J}=7.4,1.4 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 146.6$ (C, C-8), 133.7 (CH, C-14), 132.1 (C, C-13), 130.5 (CH, C-12), $113.6\left(\mathrm{CH}_{2}, \mathrm{C}-15\right)$, $109.3\left(\mathrm{CH}_{2}, \mathrm{C}-17\right), 80.6(\mathrm{CH}, \mathrm{C}-3), 71.1(\mathrm{CH}$, $\mathrm{C}-2), 56.8(\mathrm{CH}, \mathrm{C}-9), 54.4(\mathrm{CH}, \mathrm{C}-5), 42.5\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 40.2(\mathrm{C}$, $\mathrm{C}-10), 39.8(\mathrm{C}, \mathrm{C}-4), 37.5\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.7\left(\mathrm{CH}_{3}, \mathrm{C}-18\right), 23.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 22.3\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 19.7\left(\mathrm{CH}_{3}, \mathrm{C}-16\right), 17.7\left(\mathrm{CH}_{3}, \mathrm{C}-19\right)$, $15.4\left(\mathrm{CH}_{3}, \mathrm{C}-20\right), \mathrm{OBz:} 166.2$ and $166.4\left(\mathrm{C}, \mathrm{OCOC}_{6} \mathrm{H}_{5}\right), 132.9$ and $132.8\left(\mathrm{CH}, \mathrm{C}-4^{\prime}\right.$ and $\left.\mathrm{C}-4^{\prime \prime}\right), 130.1$ and $129.9\left(\mathrm{C}, \mathrm{C}-1^{\prime}\right.$ and C-1"), 129.5 (CH, C-2', C-6', C-2', and C-6"'), 128.3 and 128.2 (CH, C-3', C-5', C-3", and C-5"); ElMS m/z 512 [M] ${ }^{+}$(0.1), 390 (1.4), 375 (0.3), 268 (4), 253 (5), 187 (6), 133 (6), 119 (5), 105 (100); anal. C 79.40\%, H 7.71\%, cal cd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}_{4}, \mathrm{C} 79.65 \%$, H 7.86\%.

Methylation of Compound 3 to Give Methyl ent-12 β -Acetoxy-15 β-hydroxykaur-16-en-19-oate (17). ${ }^{28} \mathrm{~A}$ solution of $\mathbf{3}(25 \mathrm{mg}, 0.066 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was treated with an excess of an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at room temperature for 3 h . After evaporation of the solvent a residue (25 mg) remained. Crystallization from EtOAc-n-pentane yielded 17 ($22 \mathrm{mg}, 0.056 \mathrm{mmol}, 84.8 \%$): colorless plates, $\mathrm{mp} 128-131{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-43.0^{\circ}\left(\mathrm{c} 0.293, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3444,3071,2949$, 1726, 1632, 1464, 1376, 1240, 1151, 1017, $908 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.30\left(1 \mathrm{H}, \mathrm{br} d, \mathrm{~J}_{178,17 \mathrm{~A}}=1.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-17\right.$, cis hydrogen with respect to $\mathrm{C}-15), 5.23\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{17 \mathrm{~A}, 17 \mathrm{~B}}=\right.$ $1.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}-17$, trans hrydrogen with respect to $\left.\mathrm{C}-15\right), 4.72$ (1 H , ddd, J ${ }_{12 \alpha, 11 \alpha}=4.2 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}=1.2 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 13 \beta}=4.4 \mathrm{~Hz}, \mathrm{H}-12 \alpha$), $3.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-15 \alpha), 3.65(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{COOMe}), 2.84(1 \mathrm{H}, \mathrm{br} \mathrm{t}$,
 dddd, $\mathrm{J}_{3 \beta, 3 \alpha}=13.3 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=4.3 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}=3.8 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=$ $1.8 \mathrm{~Hz}, \mathrm{H}-3 \beta)$, $2.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}_{14 \beta, 14 \alpha}=12.3 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta}<0.5\right.$ $\mathrm{Hz}, \mathrm{H}-14 \beta), 2.02(3 \mathrm{H}, \mathrm{s}, 12 \beta-\mathrm{OAc}), 1.91(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J} \sigma \alpha, 6 \beta=13.6$ $\left.\mathrm{Hz}, \mathrm{J}_{6 \alpha, 5 \alpha}=2.1 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \alpha}=4.0 \mathrm{~Hz}, \mathrm{~J}_{6 \alpha, 7 \beta}=3.4 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 1.78$ ($2 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \beta$ and $\mathrm{H}-7 \beta$), $1.70\left(3 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-1 \beta, \mathrm{H}-6 \beta\right.$, and $\mathrm{H}-11 \alpha), 1.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}_{11 \beta, 11 \alpha}=16.4 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 9 \alpha}<0.5 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{11 \beta, 12 \alpha}=1.2 \mathrm{~Hz}, \mathrm{H}-11 \beta\right), 1.40\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{7 \alpha, 7 \beta}=\mathrm{J}_{7 \alpha, 6 \beta}=13.6\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{7 \alpha, 6 \alpha}=4.0 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 1.39\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \alpha\right), 1.30(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}_{14 \alpha, 14 \beta}=12.3 \mathrm{~Hz}, \mathrm{~J}_{14 \alpha, 13 \beta}=4.6 \mathrm{~Hz}, \mathrm{H}-14 \alpha\right), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 18), $1.14\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}{ }_{9 \alpha, 11 \alpha}=9.6 \mathrm{~Hz}, \mathrm{~J}_{9 \alpha, 11 \beta}<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha\right)$, $1.04\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5 \alpha, 6 \alpha}=2.1 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=12.1 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 0.98(1 \mathrm{H}$, $\left.\operatorname{td}, \mathrm{J}_{3 \alpha, 3 \beta}=J^{3} \alpha, 2 \beta=13.3 \mathrm{~Hz}, \mathrm{~J} 3 \alpha, 2 \alpha=4.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} 20), 0.75\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J}_{1 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=4.2 \mathrm{~Hz}\right.$, $\mathrm{H}-1 \alpha) ;{ }^{43}{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$), see Table 1; EIMS m/z $390[\mathrm{M}]^{+}(1), 372$ (1), 330 (100), 312 (17), 271 (42), 270 (49), 255 (29), 253 (27), 237 (26), 173 (23), 161 (31), 148 (37), 147 (31), 145 (35), 133 (34), 131 (34), 123 (43), 121 (70); anal. C 70.66%, H 8.90\%, calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$, C 70.74%, H 8.78\%.

Methylation of Compound 7 to Give Methyl ent-12 β -Acetoxy-17-oxokaur-15-en-19-oate (19). ${ }^{28}$ Treatment of 7 ($20 \mathrm{mg}, 0.053 \mathrm{mmol}$) with an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$, as described above for obtaining 17, yielded the methyl ester 19 (16 mg , 0.041 mmol , after crystallization from EtOAc-n-pentane, $77.4 \%)$: col orless plates, $\mathrm{mp} 146-149^{\circ} \mathrm{C} ;[\alpha]_{D^{20}}-39.6^{\circ}$ (c 0.723 , $\left.\mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 249$ (3.84) nm; IR (KBr) $v_{\text {max }}$ 2990, 2955, 2730, 2708, 1738, 1713, 1684, 1610, 1444, 1370, 1243, 1208, 1026, 985, $973 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 9.69\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{17,15}=0.8 \mathrm{~Hz}, \mathrm{H}-17\right), 6.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{15,17}=0.8\right.$ $\mathrm{Hz}, \mathrm{H}-15), 4.90\left(1 \mathrm{H}\right.$, ddd, $\mathrm{J}_{12 \alpha, 11 \alpha}=6.0 \mathrm{~Hz}, \mathrm{~J}_{12 \alpha, 11 \beta}=1.2 \mathrm{~Hz}$, $\mathrm{J} 12 \alpha, 13 \beta=4.2 \mathrm{~Hz}, \mathrm{H}-12 \alpha), 3.64(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{COOMe}), 3.07(1 \mathrm{H}, \mathrm{t}$, $\left.\int_{13 \beta, 12 \alpha}=\int_{13 \beta, 14 \alpha}=4.2 \mathrm{~Hz}, \int_{13 \beta, 14 \beta}=0 \mathrm{~Hz}, \mathrm{H}-13 \beta\right)$, $2.47(1 \mathrm{H}, \mathrm{d}$, $\left.\int_{14 \beta, 14 \alpha}=11.4 \mathrm{~Hz}, \mathrm{~J}_{14 \beta, 13 \beta}=0 \mathrm{~Hz}, \mathrm{H}-14 \beta\right), 2.16\left(1 \mathrm{H}, \operatorname{dddd}, \mathrm{J}_{3 \beta, 3 \alpha}\right.$ $\left.=13.4 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \alpha}=4.2 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 2 \beta}=3.8 \mathrm{~Hz}, \mathrm{~J}_{3 \beta, 1 \beta}=1.6 \mathrm{~Hz}, \mathrm{H}-3 \beta\right)$, $2.02(3 \mathrm{H}, \mathrm{s}, 12 \beta-\mathrm{OAc}), 1.86\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-6 \alpha\right), 1.82\left(1 \mathrm{H}, \mathrm{m}^{*}\right.$, $\mathrm{H}-11 \alpha$), 1.80 ($1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-2 \beta$), 1.74 ($1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-7 \beta$), 1.70 (1 H , $\left.\mathrm{m}^{*}, \mathrm{H}-6 \beta\right), 1.69\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-1 \beta\right), 1.69\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{7 \alpha, 7 \beta}=\mathrm{J}_{7 \alpha, 6 \beta}=\right.$ $\left.13.0 \mathrm{~Hz}, \mathrm{~J}_{7 \alpha, 6 \alpha}=4.0 \mathrm{~Hz}, \mathrm{H}-7 \alpha\right), 1.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, \mathrm{J}_{11 \beta, 11 \alpha}=17.6\right.$ $\mathrm{Hz}, \mathrm{J}_{11 \beta, 9 \alpha}<0.5 \mathrm{~Hz}, \mathrm{~J}_{11 \beta, 12 \alpha}=1.2 \mathrm{~Hz}, \mathrm{H}-11 \beta$), $1.40\left(1 \mathrm{H}, \mathrm{m}^{*}\right.$, $\mathrm{H}-2 \alpha), 1.38\left(1 \mathrm{H}, \mathrm{m}^{*}, \mathrm{H}-14 \alpha\right), 1.23(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9 \alpha, 11 \alpha=9.6 \mathrm{~Hz}$, $\mathrm{J} 9 \alpha, 11 \beta<0.5 \mathrm{~Hz}, \mathrm{H}-9 \alpha), 1.17$ (3H, s, Me-18), 1.07 (1H, dd, J $5 \alpha, 6 \alpha$ $\left.=2.8 \mathrm{~Hz}, \mathrm{~J}_{5 \alpha, 6 \beta}=11.6 \mathrm{~Hz}, \mathrm{H}-5 \alpha\right), 0.98\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J}_{3 \alpha, 3 \beta}=\mathrm{J} 3 \alpha, 2 \beta=\right.$ $\left.13.4 \mathrm{~Hz}, \mathrm{~J}_{3 \alpha, 2 \alpha}=4.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha\right), 0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20), 0.76(1 \mathrm{H}$, $\left.\operatorname{td}, \mathrm{J}_{1 \alpha, 1 \beta}=\mathrm{J}_{1 \alpha, 2 \beta}=13.2 \mathrm{~Hz}, \mathrm{~J}_{1 \alpha, 2 \alpha}=4.1 \mathrm{~Hz}, \mathrm{H}-1 \alpha\right) ;{ }^{43}{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100 \mathrm{MHz}$), see Table 1; EIMS m/z 388 [M] ${ }^{+}$(4), 346 (19), 328 (57), 316 (27), 269 (43), 268 (58), 257 (22), 253 (21), 173 (23), 161 (46), 160 (30), 147 (30), 133 (35), 123 (57), 121 (97), 119 (44), 117 (36), 109 (62), 107 (63), 43 (100); anal. C $70.93 \%, \mathrm{H} 8.21 \%$, calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}, \mathrm{C} 71.11 \%, \mathrm{H} 8.30 \%$.

Biological Assays. Antimicrobial activities of 1, 3-5, 7, 9, 10, 12-14, 17, and 19 were tested against Staphyl ococcus aureus ATCC 25923, Escherischia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans CIP 3153A. The minimum inhibitory concentration (MIC) values were determined by the serial broth microdilution method according to NCCLS. ${ }^{44}$ The compounds were dissolved in DMSO and graded concentration of broth medium (MuellerHinton for bacteria, YMA for the yeast) ranging from 250 to $7.8 \mu \mathrm{~g} / \mathrm{mL}$. Sol vent blank was included. Kanamycin was used as positive control (MIC values $<7.8 \mathrm{mg} / \mathrm{mL}$ for S . aureus and E. coli strains).

Acknowledgment. The authors are indebted to Prof. R. Riguera, University of Santiago de Compostela, Spain, for recording the CD spectrum of 14 and helpful discussions. Thanks to Dr. E. S. Martins, "Centro de Botânica do I nstituto de Investigação Científica Tropical", Lisbon, Portugal, for the identification of the plant material. The authors are al so very grateful to Prof. A. Duarte, Microbiology Laboratory, Faculty of Phamacy, Lisbon University, Portugal, for performing the biological assay. This work was supported by funds from the Spanish "Comisión Interministerial de Ciencia y Tecnol ogía" (CICYT, grant no. AGL 2001-1652) and from Portuguese FCT (I\&D no. 8/94), POCTI (QCA III), and Feder Porjects. One of us (C.G.-M.) thanks the Praxis Program for a fellowship (Praxis XXI/BD/18046/98).

References and Notes

(1) Gaspar-Marques, C.; Simões, M. F.; Duarte, A.; Rodríguez, B. J . Nat. Prod. 2003, 66, 491-496.
(2) Sutthivaiyakit, S.; Nareeboon, P.; Ruangrangsi, N.; Ruchirawat, S.; Pisutjaroenpong, S.; Mahidol, C. Phytochemistry 2001, 56, 811-814.'
(3) Beale, M. H.; Bearder, J . R.; MacMillan, J .; Matsuo, A.; Phinney, B. O. Phytochemistry 1983, 22, 875-881.
(4) Lewis, N. J .; MacMillan, J. J. Chem. Soc., Perkin Trans. 1 1980, 1270-1278.
(5) Bohlmann, F.; Knoll, K.-H.; Robinson, H.; King, R. M. Phytochemistry 1980, 19, 107-110.
(6) Bohlmann, F.; J akupovic, J .; King, R. M.; Robinson, H. Phytochemistry 1980, 19, 863-868.
(7) Biftu, T.; Stevenson, R. J. Chem. Soc., Perkin Trans. 1 1978, 360363.
(8) Star, A. E.; Mabry, T. J. Phytochemistry 1971, 10, 2817-2818.
(9) Sakakibara, M.; DiFeo, D.; Nakatani, N.; Timmermann, B.; Mabry, T. J. Phytochemistry 1976, 15, 727-731.
(10) Wollenweber, E.; Wassum, M. Tetrahedron Lett. 1972, 9, 797-800.
(11) Rodríguez, B.; Martín-Panizo, F. An. Quím. 1979, 75, 431-432.
(12) Rao, M. M.; Kingston, D. G. I.; Spittler, T. D. Phytochemistry 1970, 9, 227-228.
(13) Kupchan, S. M.; Sigel, C. W.; Hemingway, R. J.; Knox, J. R.; Udayamurthy, M. S. Tetrahedron 1969, 25, 1603-1615.
(14) Timmermann, B. N.; Mues, R.; Mabry, T. J .; Powell, A. M. Phytochemistry 1979, 18, 1855-1858.
(15) Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Magn. Reson. Chem. 2003, 41, 636-638.
(16) K rebs, H. C.; Rakotoarimanga, J . V.; H abermehl, G. G. Magn. Reson. Chem. 1990, 28, 124-128.
(17) Juell, S. M.-K.; Hansen, R.; J ork, H. Arch. Pharm. (Weinheim, Ger.) 1976, 309, 458-466.
(18) Several numbering systems are in use for aromadendranes; the one chosen for this paper is that most commonly used (Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids; Chapman \& H all: London, 1991; Vol. 1, p XXV), and it is indicated on formula 1.
(19) Faure, R.; Ramanoelina, A. R. P.; Rakotonirainy, O.; Bianchini, J.P.; Gaydou, E. M. Magn. Reson. Chem. 1991, 29, 969-971.
(20) Ciminiello, P.; Fattorusso, E.; Magno, S.; Mayol, L. Can. J . Chem. 1987, 65, 518-522.
(21) Rashid, M. A.; Gray, A. I.; Waterman, P. G.; Armstrong, J . A. J . Nat. Prod. 1995, 58, 618-621.
(22) Wessels, M.; König, G. M.; Wright, A. D. J . Nat. Prod. 2001, 64, 370372.
(23) Goldsby, G.; Burke, B. A. Phytochemistry 1987, 26, 1059-1063.
(24) Gijsen, H. J. M.; Wijnberg, J. B. P. A.; de Groot, Ae. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, Ch., Eds.; Springer-Verlag: Vienna, 1995; Vol. 64, pp 149-193.
(25) Abdel-Mogib, M.; Albar, H. A.; Batterjee, S. M. Molecules 2002, 7, 271-301.
(26) Fournier, G.; Paris, M.; Dumitresco, S. M.; Pages, N.; Boudene, C. Planta Med. 1986, 52, 486-488.
(27) A GC analysis ${ }^{26}$ of the essential oil of P. fruticosus on a fused silica capillary column allowed the identification of 10(14)-aromadendrene, but without defining its absolute configuration.
(28) Since compounds 2-17 and 19 belong to the enantio series, the entα - or ent- β-configuration for a substituent indicates that it is placed, respectively, above or below the plane of the formulas depicted for these substances. Moreover, the α - or β-configurations indicated for the assignment of the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds also refer to this nomenclature throughout the text.
(29) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy. Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, 1983; pp 15-17, 55-103.
(30) Compound 16 showed another Cotton effect ($\Delta \epsilon_{248}-6.6$) which could be associated with interactions between the benzoates and the 12Z,-14-diene chromophore (see ref 29, pp 255-259).
(31) Hutchison, M.; Lewer, P.; MacMillan, J.J. Chem. Soc., Perkin Trans. 1 1984, 2363-2366.
(32) Liu, G.; Müller, R.; Rüedi, P. Helv. Chim. Acta 2003, 86, 420-438.
(33) Connolly, J. D.; Hill, R. A. Dictionary of Terpenoids; Chapman \& Hall: London, 1991; Vol. 2, pp 906-946, 948-956.
(34) Katti, S. B.; Rüedi, P.; Eugster, C. H. Helv. Chim. Acta 1982, 65 2189-2197.
(35) Liu, G.; Rüedi, P. Phytochemistry 1996, 41, 1563-1568.
(36) Fujita, E.; Ochiai, M.; Ichida, I.; Chatterjee, A.; Desmukh, S. K. Phytochemistry 1975, 14, 2249-2251.
(37) Only eight phyllocladane diterpenoids have been isolated from Plectranthus species, ${ }^{25,32-34}$ whereas 21 ent-kaurane derivatives, including those described in this work (3-9 and 11), have been found ${ }^{1,25}$ in plants belonging to this genus.
(38) Duc, D. K. M.; Fétizon, M.; Lazare, S.; Grant, P. K.; Nicholls, M. J .; Liau, H. T. L.; Francis, M. J.; Poisson, J.; Bernassau, J.-M.; Roque, N. F.; Wovkulich, P. M.; Wenkert, E. Tetrahedron 1981, 37, 23712374.
(39) Bohlmann, F.; Suding, H.; Cuatrecasas, J .; Robinson, H.; King, R. M. Phytochemistry 1980, 19, 2399-2403.
(40) Herz, W.; Kulanthaivel, P.; Watanabe, K. Phytochemistry 1983, 22, 2021-2025.
(41) Harrigan, G. G.; Bolzani, V. S.; Gunatilaka, A. A. L.; Kingston, D. G. I. Phytochemistry 1994, 36, 109-113.
(42) Anam, E. M. Indian. J. Chem. 1998, 37B, 187-189.
(43) Signals marked with an asterisk appeared as overlapped or partially overlapped multiplets, and their assignments were in agreement with the HSQC spectrum.
(44) Anonymous. In National Committee for Clinical Laboratory Standards, 5th ed.; NCCLS: Wayne, PA, 2000; approved standard M 7-A5.

NP030490

[^0]: * To whom inquiries should be addressed. (M.F.S.) Tel: +351 217946400. Fax: +352217946470 . E-mail: fasimoes@ff.ul.pt. (B.R.) Tel: +34915622900. Fax: +34 915644853. E-mail: iqor107@iqog.csic.es.
 ${ }^{\dagger}$ F aculdade de Farmácia da Universidade de Lisboa, CECF.
 \ddagger Instituto de Química Orgánica, CSIC.

